Home
Class 14
MATHS
What is the value of ( cosec (78^(@) - t...

What is the value of `( cosec (78^(@) - theta) - sec ( 12^(@) + theta) - tan (67^(@) + theta) + cot (23^(@) - theta) )/( tan 13^(@) tan 37^(@) tan 45^(@) tan 53^(@) tan 77^(@) )`?

A

`-1`

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression step-by-step, we will simplify the numerator and the denominator separately. ### Given Expression: \[ \frac{ \csc(78^\circ - \theta) - \sec(12^\circ + \theta) - \tan(67^\circ + \theta) + \cot(23^\circ - \theta) }{ \tan(13^\circ) \tan(37^\circ) \tan(45^\circ) \tan(53^\circ) \tan(77^\circ) } \] ### Step 1: Simplifying the Numerator 1. **Rewrite Trigonometric Functions**: - Using the identity \(\csc(90^\circ - x) = \sec(x)\): \[ \csc(78^\circ - \theta) = \sec(12^\circ + \theta) \] - Using the identity \(\tan(90^\circ - x) = \cot(x)\): \[ \tan(67^\circ + \theta) = \cot(23^\circ - \theta) \] 2. **Substituting the Identities**: - Substitute these into the numerator: \[ \sec(12^\circ + \theta) - \sec(12^\circ + \theta) - \tan(67^\circ + \theta) + \cot(23^\circ - \theta) \] - This simplifies to: \[ 0 - \tan(67^\circ + \theta) + \cot(23^\circ - \theta) \] 3. **Further Simplification**: - Since \(\tan(67^\circ + \theta) = \cot(23^\circ - \theta)\), we can write: \[ -\tan(67^\circ + \theta) + \tan(67^\circ + \theta) = 0 \] ### Step 2: Simplifying the Denominator 1. **Evaluate the Denominator**: - The denominator is: \[ \tan(13^\circ) \tan(37^\circ) \tan(45^\circ) \tan(53^\circ) \tan(77^\circ) \] - We know that \(\tan(45^\circ) = 1\), so: \[ \tan(13^\circ) \tan(37^\circ) \cdot 1 \cdot \tan(53^\circ) \tan(77^\circ) \] 2. **Using Complementary Angles**: - Notice that: \[ \tan(53^\circ) = \cot(37^\circ) \quad \text{and} \quad \tan(77^\circ) = \cot(13^\circ) \] - Therefore: \[ \tan(13^\circ) \tan(77^\circ) = 1 \quad \text{and} \quad \tan(37^\circ) \tan(53^\circ) = 1 \] - Thus, the denominator simplifies to: \[ 1 \cdot 1 = 1 \] ### Final Step: Combine Numerator and Denominator - The entire expression simplifies to: \[ \frac{0}{1} = 0 \] ### Final Answer: The value of the expression is: \[ \boxed{0} \]
Promotional Banner