Home
Class 14
MATHS
If x + y + z = 10 and xy + yz + zx = 15,...

If x + y + z = 10 and xy + yz + zx = 15, then find the value of `x^(3) + `y^(3)` + `z^(3)` - 3xyz.

A

550

B

525

C

575

D

560

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + y^3 + z^3 - 3xyz \) given the equations: 1. \( x + y + z = 10 \) 2. \( xy + yz + zx = 15 \) We can use the identity for the sum of cubes: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)((x + y + z)^2 - 3(xy + yz + zx)) \] ### Step 1: Calculate \( (x + y + z)^2 \) From the first equation, we know: \[ x + y + z = 10 \] Now, we calculate \( (x + y + z)^2 \): \[ (x + y + z)^2 = 10^2 = 100 \] ### Step 2: Substitute into the identity Now we substitute \( (x + y + z) \) and \( (xy + yz + zx) \) into the identity: \[ x^3 + y^3 + z^3 - 3xyz = (10)(100 - 3 \cdot 15) \] ### Step 3: Calculate \( 3(xy + yz + zx) \) Now we calculate \( 3 \cdot 15 \): \[ 3 \cdot 15 = 45 \] ### Step 4: Substitute back into the equation Now we substitute this back into our equation: \[ x^3 + y^3 + z^3 - 3xyz = 10(100 - 45) \] ### Step 5: Simplify the expression Now we simplify the expression inside the parentheses: \[ 100 - 45 = 55 \] So we have: \[ x^3 + y^3 + z^3 - 3xyz = 10 \cdot 55 \] ### Step 6: Calculate the final result Now we calculate \( 10 \cdot 55 \): \[ 10 \cdot 55 = 550 \] Thus, the final answer is: \[ \boxed{550} \]
Promotional Banner