Home
Class 14
MATHS
If 3 sec^(2)theta + tan theta = 7, 0^(@)...

If 3 `sec^(2)theta + tan theta = 7, 0^(@) lt theta lt 90^(@)`, then the value of `(cosec2theta+costheta)/(sin2theta+cottheta)` is:

A

`(2+sqrt(3))/4`

B

`(2+3sqrt(2))/4`

C

`(3+sqrt(2))/4`

D

`(2+sqrt(3))/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the equation given: **Step 1:** Start with the equation: \[ 3 \sec^2 \theta + \tan \theta = 7 \] **Step 2:** Recall the identity: \[ \sec^2 \theta = 1 + \tan^2 \theta \] Substituting this into the equation gives: \[ 3(1 + \tan^2 \theta) + \tan \theta = 7 \] This simplifies to: \[ 3 + 3 \tan^2 \theta + \tan \theta = 7 \] **Step 3:** Rearranging the equation: \[ 3 \tan^2 \theta + \tan \theta - 4 = 0 \] **Step 4:** Let \( x = \tan \theta \). The equation becomes: \[ 3x^2 + x - 4 = 0 \] **Step 5:** Now, we can use the quadratic formula to solve for \( x \): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Where \( a = 3, b = 1, c = -4 \): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 3 \cdot (-4)}}{2 \cdot 3} \] \[ x = \frac{-1 \pm \sqrt{1 + 48}}{6} \] \[ x = \frac{-1 \pm \sqrt{49}}{6} \] \[ x = \frac{-1 \pm 7}{6} \] **Step 6:** Calculating the two possible values: 1. \( x = \frac{6}{6} = 1 \) 2. \( x = \frac{-8}{6} \) (not valid as \( \tan \theta \) cannot be negative in the given range) Thus, \( \tan \theta = 1 \) implies: \[ \theta = 45^\circ \] **Step 7:** Now, we need to find the value of: \[ \frac{\csc 2\theta + \cos \theta}{\sin 2\theta + \cot \theta} \] **Step 8:** Calculate each term: - \( \csc 2\theta = \csc 90^\circ = 1 \) - \( \cos \theta = \cos 45^\circ = \frac{1}{\sqrt{2}} \) - \( \sin 2\theta = \sin 90^\circ = 1 \) - \( \cot \theta = \cot 45^\circ = 1 \) **Step 9:** Substitute these values into the expression: \[ \frac{1 + \frac{1}{\sqrt{2}}}{1 + 1} = \frac{1 + \frac{1}{\sqrt{2}}}{2} \] **Step 10:** To simplify, multiply numerator and denominator by \( \sqrt{2} \): \[ = \frac{\sqrt{2} + 1}{2\sqrt{2}} \] **Step 11:** Finally, we can express this as: \[ = \frac{2 + \sqrt{2}}{4} \] Thus, the final answer is: \[ \frac{2 + \sqrt{2}}{4} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If 5 sin theta - 4 cos theta = 0, 0^(@) lt theta lt 90^(@) , then the value of (5sintheta-2costheta)/(sintheta+3costheta) is :

If tan^(2)theta - 3sectheta + 3=0, 0^(@) lt theta lt 90^(@) , then the value of sintheta + cos theta is:

If cos theta=(4)/(5) and 0lt theta lt 90^(@) , then the value of (3cos theta+"2 cosec "theta)/(4sin theta-cot theta) is :

If 2 cos^(2) theta = 3 sin theta, 0^(@) lt theta lt 90^(@) , then the value of ((1)/(2) cosec^(2) theta - cot^(2) theta) is:

If tan2theta.tan3theta=1 , where 0^(@)lt theta lt90^(@) then the value of theta is

If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then the value of 2sin theta + cos theta is: