Home
Class 14
MATHS
(Cos^(2)phi+(1)/(cosec^(2)phi))+17=x . W...

`(Cos^(2)phi+(1)/(cosec^(2)phi))+17=x` . What is the value of `x^(2)` ?

A

`18`

B

`324`

C

`256`

D

`16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^2 \phi + \frac{1}{\csc^2 \phi} + 17 = x \) and find the value of \( x^2 \), we can follow these steps: ### Step 1: Rewrite the equation We know that \( \csc^2 \phi = \frac{1}{\sin^2 \phi} \). Therefore, we can rewrite \( \frac{1}{\csc^2 \phi} \) as \( \sin^2 \phi \): \[ \cos^2 \phi + \sin^2 \phi + 17 = x \] ### Step 2: Use the Pythagorean identity Using the Pythagorean identity, we know that: \[ \cos^2 \phi + \sin^2 \phi = 1 \] Substituting this into our equation gives: \[ 1 + 17 = x \] ### Step 3: Simplify the equation Now, simplify the left side: \[ 18 = x \] ### Step 4: Calculate \( x^2 \) Now that we have found \( x \), we can calculate \( x^2 \): \[ x^2 = 18^2 = 324 \] ### Final Answer Thus, the value of \( x^2 \) is: \[ \boxed{324} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1-3(cot^(2)phi-cos^(2)phi)=sin^(2)phi,0^(@)ltthetalt90^(@) , then what is the value of (2sinphi+cosphi) ?

If latus rectum of ellipse x^(2)tan^(2)phi+y^(2)sec^(2)phi=1 is 1/2, then the value of phi where phi in(0,pi) is

Find the maximum and minimum value of the sum of the squares of the roots of the equatiorn x^(2)+(3sin phi-4)x+(1)/(2)cos^(2)phi=0. For what value of phi in (-pi,pi) these extreme values occur.

If cos theta=(2cos phi-1)/(2-cos phi), then find the value of tan((theta)/(2))

If (sin^2 phi+3sin phi+2)/(cos^2 phi)=1 , where -90^@< phi <90^@ , then what is the value of (cos 2 phi+sin3 phi+cosec2 phi) ?

If 3(cot^2 phi-cos^2 phi)=cos^2 phi, 0^@ < phi < 90^@ , then the value of (tan^2 phi +cosec^2 phi + sin^2 phi) is:

If alpha,beta are the roots of the equation x^(2)+(sin phi-1)x-(1)/(2)cos^(2)phi=0(phi in R) then the maximum value of the sum of the squares of the roots is.

If tan((pi)/(4)+phi)=(1)/(3) ,then the value of cos2 phi is

If sin theta+sin phi=(1)/(2) and cos theta+cos phi=1 then find the value of cot((theta+phi)/(2))