Home
Class 14
MATHS
If sec^(4)theta-sec^(2)theta=3 then the ...

If `sec^(4)theta-sec^(2)theta=3` then the value of `tan^(4)theta+tan^(2)theta` is :

A

8

B

4

C

6

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec^4 \theta - \sec^2 \theta = 3 \) and find the value of \( \tan^4 \theta + \tan^2 \theta \), we can follow these steps: ### Step 1: Rewrite the equation using the identity We know that: \[ \sec^2 \theta = 1 + \tan^2 \theta \] Using this identity, we can express \( \sec^4 \theta \) in terms of \( \tan^2 \theta \): \[ \sec^4 \theta = (\sec^2 \theta)^2 = (1 + \tan^2 \theta)^2 \] ### Step 2: Substitute into the equation Now, substituting \( \sec^4 \theta \) into the original equation gives: \[ (1 + \tan^2 \theta)^2 - (1 + \tan^2 \theta) = 3 \] ### Step 3: Expand the equation Expanding \( (1 + \tan^2 \theta)^2 \): \[ 1 + 2\tan^2 \theta + \tan^4 \theta - 1 - \tan^2 \theta = 3 \] This simplifies to: \[ \tan^4 \theta + \tan^2 \theta = 3 \] ### Step 4: Final Result Thus, the value of \( \tan^4 \theta + \tan^2 \theta \) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

3sec^(4)theta+8=10sec^(2)theta then find the value of tan theta

if 3sec^(4)theta+8=10sec^(2)theta, then find the value of tan theta

If sec^(2)theta+tan^(2)theta=sqrt(3) , then the value of (sec^(4)theta-tan^(4)theta) is

If tan theta+sec theta=4, then the value of sin theta is

If sec^(4)theta+sec^(2)theta=10+tan^(4)theta+tan^(2)theta, then sin^(2)theta=(2)/(3)(b)(3)/(4)(c)(4)/(5)(d)(5)/(6)

Prove the identity sec^(4)theta-sec^(2)theta=tan^(4)theta+tan^(2)theta

If sec^(2)theta+tan^(2)theta=(7)/(12) , then sec^(4)theta-tan^(4)theta=?

If tan theta+sec theta=(2)/(3), then the value of sec theta is

Prove that: 2sec^(2)theta-sec^(4)theta-2csc^(2)theta+csc^(4)theta=(1-tan^(8)theta)/(tan^(2)theta)