Home
Class 14
MATHS
What is the value of the expression ? ...

What is the value of the expression ?
`((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/(3(a-b)(b-c)(c-a))=?`

A

4

B

1

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{(a-b)^3 + (b-c)^3 + (c-a)^3}{3(a-b)(b-c)(c-a)}, \] we can use a well-known algebraic identity. ### Step 1: Recognize the identity We know that for any three numbers \( x, y, z \): \[ x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - xz - yz). \] In our case, we can set \( x = a-b \), \( y = b-c \), and \( z = c-a \). ### Step 2: Calculate \( x + y + z \) Let's compute \( x + y + z \): \[ x + y + z = (a-b) + (b-c) + (c-a) = a - b + b - c + c - a = 0. \] ### Step 3: Apply the identity Since \( x + y + z = 0 \), we can simplify our expression using the identity: \[ x^3 + y^3 + z^3 = 3xyz. \] Thus, we have: \[ (a-b)^3 + (b-c)^3 + (c-a)^3 = 3(a-b)(b-c)(c-a). \] ### Step 4: Substitute back into the original expression Now, substituting this back into the original expression gives: \[ \frac{3(a-b)(b-c)(c-a)}{3(a-b)(b-c)(c-a)}. \] ### Step 5: Simplify the expression This simplifies to: \[ 1. \] ### Final Answer Thus, the value of the expression is: \[ \boxed{1}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (a-b)^3+(b-c)^3+(c-a)^3 =0 if :

If a,b,c are real and distinct numbers,then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b)(b-c)*(c-a)) is

If a,b,c are real and distinct nubmer , then the value of ((a -b)^(3) + (b - c)^(3) + (c -a)^(3))/((a - b)(b - c)(c - a)) is

Factorise : (a+b)^(3)+(b+c)^(3)+(c+a)^(3)-3(a+b)(b+c)(c+a)

The expression (a - b)^3 + (b - c)^3 + (c - a)^3 = 0 if :

The expression (a-b)^(3)+(b-c)^(3)+(c-a)^(3) can be factorized as (a)(a-b)(b-c)(c-a)(b)3(a-b)(b-c)(c-a)(c)-3(a-b)(b-c)(c-a)(d)(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)