Home
Class 14
MATHS
If 10 sec^(2)x - 9tan^(2)x= 13 and 0^@le...

If `10 sec^(2)x - 9tan^(2)x= 13 and 0^@le x lt 90^@` then x = _____

A

`30^@`

B

`45^@`

C

`60^@`

D

`90^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(10 \sec^2 x - 9 \tan^2 x = 13\) for \(0^\circ \leq x < 90^\circ\), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 10 \sec^2 x - 9 \tan^2 x = 13 \] ### Step 2: Use the identity We know the trigonometric identity: \[ \sec^2 x = 1 + \tan^2 x \] Using this identity, we can express \(\sec^2 x\) in terms of \(\tan^2 x\): \[ \sec^2 x = 1 + \tan^2 x \] Substituting this into the equation gives: \[ 10(1 + \tan^2 x) - 9 \tan^2 x = 13 \] ### Step 3: Simplify the equation Expanding the equation: \[ 10 + 10 \tan^2 x - 9 \tan^2 x = 13 \] This simplifies to: \[ 10 + \tan^2 x = 13 \] ### Step 4: Isolate \(\tan^2 x\) Now, we isolate \(\tan^2 x\): \[ \tan^2 x = 13 - 10 \] \[ \tan^2 x = 3 \] ### Step 5: Find \(\tan x\) Taking the square root of both sides, we find: \[ \tan x = \sqrt{3} \] ### Step 6: Determine \(x\) We know that: \[ \tan 60^\circ = \sqrt{3} \] Thus, we conclude: \[ x = 60^\circ \] ### Final Answer Therefore, the value of \(x\) is: \[ \boxed{60^\circ} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 3sec^(2)x - 2tan^(2)x = 6 and 0^(@) le x le 90^(@) then x = ?

If 8 sec^(2)x- 7 tan^(2)x= 11 and 0^(@) le x le 90^(@) , then x= ?

If 2cos^(2)x- sin^(2)x= -0.25 and 0^(@) le x lt 90^(@) , then x= ?

2sec^2x-tan^2x=5and 0^@ le xle 90^@ then x=?

If tan^(2) x + 1/(tan^(2)x) =2 and 0^(@) lt x lt 90^(@) , then what is the value of x ?

8sec^2x-7tan^2x=11 for 0^@leqxleq90^@

int(sec^(2)x)/(9-tan^(2)x)dx

If 7 sin ^(2) x + 3 cos ^(2) x =4, 0 lt x lt 90^(@), then what is the value of tan x ?

If 3 sec^(2) x - 4 = 0, then the value of x ( 0 lt x lt 90^(@))