Home
Class 14
MATHS
What is the answer (1)/(6) +(1)/(12) +(1...

What is the answer `(1)/(6) +(1)/(12) +(1)/(20) +(1)/(30) +(1)/(42) +(1)/(56)`?

A

`(11)/(24)`

B

`(3)/(8)`

C

`(7)/(16)`

D

`(13)/(28)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} \), we will follow these steps: ### Step 1: Find the Least Common Multiple (LCM) First, we need to find the least common multiple (LCM) of the denominators: 6, 12, 20, 30, 42, and 56. - The prime factorization of each number is: - \( 6 = 2 \times 3 \) - \( 12 = 2^2 \times 3 \) - \( 20 = 2^2 \times 5 \) - \( 30 = 2 \times 3 \times 5 \) - \( 42 = 2 \times 3 \times 7 \) - \( 56 = 2^3 \times 7 \) The LCM will take the highest power of each prime: - For \( 2 \): \( 2^3 \) (from 56) - For \( 3 \): \( 3^1 \) (from 6, 12, 30, 42) - For \( 5 \): \( 5^1 \) (from 20, 30) - For \( 7 \): \( 7^1 \) (from 42, 56) Thus, the LCM is: \[ LCM = 2^3 \times 3^1 \times 5^1 \times 7^1 = 8 \times 3 \times 5 \times 7 = 840 \] ### Step 2: Rewrite Each Fraction Now, we rewrite each fraction with the common denominator of 840: - \( \frac{1}{6} = \frac{140}{840} \) - \( \frac{1}{12} = \frac{70}{840} \) - \( \frac{1}{20} = \frac{42}{840} \) - \( \frac{1}{30} = \frac{28}{840} \) - \( \frac{1}{42} = \frac{20}{840} \) - \( \frac{1}{56} = \frac{15}{840} \) ### Step 3: Add the Fractions Now, we can add these fractions: \[ \frac{140 + 70 + 42 + 28 + 20 + 15}{840} = \frac{315}{840} \] ### Step 4: Simplify the Result Next, we simplify \( \frac{315}{840} \): - Both 315 and 840 can be divided by 105: \[ \frac{315 \div 105}{840 \div 105} = \frac{3}{8} \] ### Final Answer Thus, the final answer is: \[ \frac{3}{8} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum : (1)/(2) + (1)/(6) + (1)/(12) + (1)/(20) + (1)/(30 ) + (1)/(42) + (1)/(56) + (1)/(72) + (1)/(90) + (1)/(110) + (1)/(132)

What is the value of (1/6) + (1/12) + (1/20)?

20(1)/(2) +30 (1)/(3) - 15(1)/(6) = ?

Find the sum of the following (1)/(9)+(1)/(6)+(1)/(12)+(1)/(20)+(1)/(30)+(1)/(42)+(1)/(56)+(1)/(72)

Find the sum: (1)/(2)+(1)/(6)+(1)/(12)+(1)/(20)+(1)/(30)+(1)/(42)+(1)/(56)+(1)/(72)+(1)/(90)+(1)/(110)+(1)/(132)(7)/(8)( b) (11)/(12)(c)(15)/(16) (d) (17)/(18)

What is the value of 12(1)/(2)+12(1)/(3)+12(1)/(6)?

the value of (1)/(6)+(1)/(12)+(1)/(20)+--------+(1)/(90)

The value of (1)/(6)+(1)/(12)+(1)/(20)+...(1)/(90) is (A) (1)/(5) (B) (2)/(5)(C)(3)/(5) (D) None of these