Home
Class 14
MATHS
If 7^(2) =49, 67^(2)=4489, then 667^(2)...

If `7^(2) =49, 67^(2)=4489`, then `667^(2)=`________. Options are (a) 448844 (b) 444088 (c) 444888 (d) 444889 .

A

448844

B

444088

C

444888

D

444889

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( 667^2 \), we can use the algebraic identity for the square of a binomial, which states that: \[ (a + b)^2 = a^2 + 2ab + b^2 \] Here, we can break down \( 667 \) into \( 600 + 67 \). ### Step 1: Identify \( a \) and \( b \) Let: - \( a = 600 \) - \( b = 67 \) ### Step 2: Calculate \( a^2 \) Now, calculate \( a^2 \): \[ 600^2 = (6 \times 10^2)^2 = 36 \times 10^4 = 360000 \] ### Step 3: Calculate \( b^2 \) Next, calculate \( b^2 \): \[ 67^2 = 4489 \quad \text{(given in the problem)} \] ### Step 4: Calculate \( 2ab \) Now, calculate \( 2ab \): \[ 2 \times 600 \times 67 = 2 \times 600 \times 67 = 80400 \] ### Step 5: Combine the results Now, combine all the results using the formula: \[ 667^2 = a^2 + 2ab + b^2 = 360000 + 80400 + 4489 \] ### Step 6: Perform the addition Now, let's add these values together: \[ 360000 + 80400 = 440400 \] \[ 440400 + 4489 = 444889 \] Thus, the value of \( 667^2 \) is: \[ \boxed{444889} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 7^(2)=49 nad 0.7^(2)=0.49 then 0.07^(2) =_________

a^(2)-49b^(2)

18-[5-{6+2(7-5}] , options are (A) 23 (B) 27 (C) 32 (D) 15.

If 49 xx 17=833 , then the value of 0.0833 div 4.9 is: Options are (a) 0.17 (b) 0.0017 (c) 1.7 (d) 0.017 .

(-35)+(-32) is equal to 67 (b) -67 (c) -3 (d) 3

11 * 7 * 9 * 2 which option is correct ? (a) – × ÷ (b) + = × (c) × ÷ = (d) + = –

If y(x) is solution of x(dy)/(dx)+2y=x^(2), y(1)=1 then value of y(1/2)= (a) -(49)/(16) (b) (49)/(16) (c) (45)/(8) (d) -(45)/(8)

Simplify (b ^(2) - 49) (b+7) + 343