Home
Class 14
MATHS
If 8^(x) = (4)/(2^(x)) then find x A)...

If `8^(x) = (4)/(2^(x)) ` then find x
A)1
B)2
C)`(1)/(2)`
D)`(2)/(3)`

A

1

B

2

C

`(1)/(2)`

D

`(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 8^{x} = \frac{4}{2^{x}} \), we will follow these steps: ### Step 1: Rewrite the bases We know that \( 8 \) can be expressed as \( 2^3 \) and \( 4 \) can be expressed as \( 2^2 \). Therefore, we can rewrite the equation as: \[ (2^3)^{x} = \frac{2^2}{2^{x}} \] ### Step 2: Simplify the left side Using the power of a power property, we can simplify the left side: \[ 2^{3x} = \frac{2^2}{2^{x}} \] ### Step 3: Simplify the right side The right side can be simplified using the property of exponents \( \frac{a^m}{a^n} = a^{m-n} \): \[ 2^{3x} = 2^{2 - x} \] ### Step 4: Set the exponents equal Since the bases are the same, we can set the exponents equal to each other: \[ 3x = 2 - x \] ### Step 5: Solve for \( x \) Now, we can solve for \( x \) by adding \( x \) to both sides: \[ 3x + x = 2 \] \[ 4x = 2 \] Now, divide both sides by \( 4 \): \[ x = \frac{2}{4} = \frac{1}{2} \] ### Conclusion Thus, the value of \( x \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(2x-1)+4^(x)=2^(x-(1)/(2))+2^(x+(1)/(2)), then x equals a.(1)/(2) b.(2)/(3) c.1 d.(3)/(2)

{(x){(1-sin^(2)x)/(3cos^(2)x),x (pi)/(2) then f(x) is continuous at x=(pi)/(2), if (a)a=(1)/(3),b=2 (b) a=(1)/(3),=(8)/(3)(c)a=(2)/(3),b=(8)/(3)(d) none of these

If x^(2)+(1)/(x^(2))=102, then x-(1)/(x)=8( b) 10 (c) 12 (d) 13

If 2^(2x-1) = 1/ 8^(x-3) then find x = ? a)   -2   (b)   -1   (c)   2   (d) 3

If A = x^(3), B = 4x^(2) + x -1, C = x +1 , then find (A -B) (A-C)

If (x^(4)+(1)/(x^(4)))=322, the value of (x-(1)/(x)) is (a) 4(b)3sqrt(2)(c)6(d)8

If sin^(3)x cos3x+cos^(3)x sin3x=(3)/(8), then the value of sin4x is (1)/(2)(b)1(c)-(1)/(2)(d)0

If y=(sin^(-1)x)^(2)+(cos^(-1)x)^(2), then (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx) is equal to 4(b)3(c)1(d)0

If 1/x+2/3= 1/(2x)+3/4 then the value of x is A) 2 B) 8 C) 6 D) 4