Home
Class 14
MATHS
If (tan theta + cot theta)=5 then find t...

If `(tan theta + cot theta)=5` then find the value of `(tan^(2) theta + cot^(2) theta)`. Options are (a) 21 (b) 27 (c) 25 (d) 23.

A

21

B

27

C

25

D

23

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \tan \theta + \cot \theta = 5 \] **Step 1: Square both sides of the equation.** \[ (\tan \theta + \cot \theta)^2 = 5^2 \] **Step 2: Expand the left-hand side using the formula \((a + b)^2 = a^2 + b^2 + 2ab\).** \[ \tan^2 \theta + \cot^2 \theta + 2 \tan \theta \cot \theta = 25 \] **Step 3: Recall that \(\tan \theta \cot \theta = 1\).** Substituting this into the equation gives: \[ \tan^2 \theta + \cot^2 \theta + 2 \cdot 1 = 25 \] **Step 4: Simplify the equation.** \[ \tan^2 \theta + \cot^2 \theta + 2 = 25 \] **Step 5: Isolate \(\tan^2 \theta + \cot^2 \theta\).** \[ \tan^2 \theta + \cot^2 \theta = 25 - 2 \] **Step 6: Calculate the final value.** \[ \tan^2 \theta + \cot^2 \theta = 23 \] Thus, the value of \(\tan^2 \theta + \cot^2 \theta\) is: \[ \boxed{23} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (1+tan^(2)theta)/(1+cot^(2)theta)

The value of tan^(2)theta+cot^(2)theta is

If 3cot theta=2, then find the value of tan theta .

If tan theta + cot theta = x, then what is the value of tan^(4) theta + cot^(4) theta ?

If tan theta+cot theta=4 , then find the value of tan^(4)theta+cot^(4)theta .

If tan theta+cot theta=2, find the value of tan^(2)theta+cot^(2)theta

If "tan"theta+"cot"theta=6 , then find the value of "tan"^(2)theta+"cot"^(2)theta .

If cot theta=1, then find the value of : 5tan^(2)theta+2sin^(2)theta-3

If tan theta + cot theta = 2 then the value of tan^2 theta + cot^2 theta is

If tan theta + cot theta =2 , then what is the value of tan^7 theta + cot ^7 theta ?