Home
Class 14
MATHS
If sec^(4)theta-sec^(2)theta=3 then the ...

If `sec^(4)theta-sec^(2)theta=3` then the value of `tan^(4)theta+tan^(2)theta` is:

A

8

B

4

C

6

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec^4 \theta - \sec^2 \theta = 3 \) and find the value of \( \tan^4 \theta + \tan^2 \theta \), we can follow these steps: ### Step 1: Substitute \( z = \sec^2 \theta \) Let \( z = \sec^2 \theta \). Then the equation becomes: \[ z^4 - z^2 = 3 \] ### Step 2: Rearrange the equation Rearranging gives us: \[ z^4 - z^2 - 3 = 0 \] ### Step 3: Let \( w = z^2 \) Now, let \( w = z^2 \). The equation can be rewritten as: \[ w^2 - w - 3 = 0 \] ### Step 4: Solve the quadratic equation We can use the quadratic formula \( w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -1, c = -3 \): \[ w = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1} \] \[ w = \frac{1 \pm \sqrt{1 + 12}}{2} \] \[ w = \frac{1 \pm \sqrt{13}}{2} \] ### Step 5: Find \( z^2 \) Since \( w = z^2 \), we have: \[ z^2 = \frac{1 + \sqrt{13}}{2} \quad \text{or} \quad z^2 = \frac{1 - \sqrt{13}}{2} \] Since \( z^2 \) must be positive, we take: \[ z^2 = \frac{1 + \sqrt{13}}{2} \] ### Step 6: Find \( \tan^2 \theta \) Using the identity \( \tan^2 \theta = \sec^2 \theta - 1 \): \[ \tan^2 \theta = z^2 - 1 = \frac{1 + \sqrt{13}}{2} - 1 = \frac{-1 + \sqrt{13}}{2} \] ### Step 7: Calculate \( \tan^4 \theta + \tan^2 \theta \) Now, we need to find \( \tan^4 \theta + \tan^2 \theta \): \[ \tan^4 \theta = (\tan^2 \theta)^2 = \left(\frac{-1 + \sqrt{13}}{2}\right)^2 \] Calculating \( \tan^4 \theta \): \[ \tan^4 \theta = \frac{(-1 + \sqrt{13})^2}{4} = \frac{1 - 2\sqrt{13} + 13}{4} = \frac{14 - 2\sqrt{13}}{4} = \frac{7 - \sqrt{13}}{2} \] Now, add \( \tan^2 \theta \): \[ \tan^4 \theta + \tan^2 \theta = \frac{7 - \sqrt{13}}{2} + \frac{-1 + \sqrt{13}}{2} \] Combining the fractions: \[ = \frac{(7 - \sqrt{13}) + (-1 + \sqrt{13})}{2} = \frac{6}{2} = 3 \] ### Final Answer Thus, the value of \( \tan^4 \theta + \tan^2 \theta \) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

3sec^(4)theta+8=10sec^(2)theta then find the value of tan theta

if 3sec^(4)theta+8=10sec^(2)theta, then find the value of tan theta

If sec^(2)theta+tan^(2)theta=sqrt(3) , then the value of (sec^(4)theta-tan^(4)theta) is

If tan theta+sec theta=4, then the value of sin theta is

If sec^(4)theta+sec^(2)theta=10+tan^(4)theta+tan^(2)theta, then sin^(2)theta=(2)/(3)(b)(3)/(4)(c)(4)/(5)(d)(5)/(6)

Prove the identity sec^(4)theta-sec^(2)theta=tan^(4)theta+tan^(2)theta

If sec^(2)theta+tan^(2)theta=(7)/(12) , then sec^(4)theta-tan^(4)theta=?

If tan theta+sec theta=(2)/(3), then the value of sec theta is

Prove that: 2sec^(2)theta-sec^(4)theta-2csc^(2)theta+csc^(4)theta=(1-tan^(8)theta)/(tan^(2)theta)