Home
Class 14
MATHS
What is the value of the expression? (...

What is the value of the expression?
`((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/(3(a-b)(b-c)(c-a))=?`
(a)4
(b)1
(c)2
(d)0

A

4

B

1

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(a-b)^3 + (b-c)^3 + (c-a)^3}{3(a-b)(b-c)(c-a)}\), we can use the identity that states if \(a + b + c = 0\), then \(a^3 + b^3 + c^3 = 3abc\). ### Step-by-step Solution: 1. **Identify the Terms**: We have three terms in the numerator: \((a-b)^3\), \((b-c)^3\), and \((c-a)^3\). 2. **Set Up the Identity**: Notice that if we let: - \(x = a - b\) - \(y = b - c\) - \(z = c - a\) Then we can see that: \[ x + y + z = (a-b) + (b-c) + (c-a) = 0 \] 3. **Apply the Identity**: Since \(x + y + z = 0\), we can apply the identity: \[ x^3 + y^3 + z^3 = 3xyz \] Therefore, we can rewrite the numerator: \[ (a-b)^3 + (b-c)^3 + (c-a)^3 = 3(a-b)(b-c)(c-a) \] 4. **Substitute Back into the Expression**: Substitute this result back into the original expression: \[ \frac{(a-b)^3 + (b-c)^3 + (c-a)^3}{3(a-b)(b-c)(c-a)} = \frac{3(a-b)(b-c)(c-a)}{3(a-b)(b-c)(c-a)} \] 5. **Simplify**: The \(3(a-b)(b-c)(c-a)\) in the numerator and denominator cancel out: \[ = 1 \] ### Final Answer: Thus, the value of the expression is \(1\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (a-b)^3+(b-c)^3+(c-a)^3 =0 if :

The expression (a - b)^3 + (b - c)^3 + (c - a)^3 = 0 if :

If a+b+c=8, then the value of (a-4)^(3)+(b-3)^(3)+(c-1)^(3)-3(a-4)(b-3)(c-1) is

If a+b+c=8 , then value of (a-4)^(3) +(b-3)^(3) +(c-1)^(3)-3(a-4) (b-3) (c-1) is

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)

The expression (a-b)^(3)+(b-c)^(3)+(c-a)^(3) can be factorized as (a)(a-b)(b-c)(c-a)(b)3(a-b)(b-c)(c-a)(c)-3(a-b)(b-c)(c-a)(d)(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)

Value of the expression (b-c)/(r_1)+(c-a)/(r_2)+(a-b)/(r_3) is equal to 1 (b) 2 (c) 3 (d) 0

The minimum value of an expression (a+b+c+d)((3)/(b+c+d)+(3)/(c+d+a)+(3)/(d+a+b)+(3)/(a+b+c)) is,where a,b,c and d are positive numbers.

The value of the determinant /_\=|(1,1,1),(a,b,c),(a^3,b^3,c^3)| is (A) (a-b)(b-c)(c-a)(a+b+c) (B) abc(a+b)(b+C)(c+a) (C) (a-b)(b-c)(c-a) (D) none of these