Home
Class 14
MATHS
If a+b+c=2s, " then " [(s - a)^2 + (s -b...

If `a+b+c=2s, " then " [(s - a)^2 + (s -b)^2 + (s - c)^2 + s^2] =?`

A

`(s^2 - a^2 – b^2-c^2)`

B

`(s^2 + a^2 + b^2+c^2)`

C

`(s^2 + b^2+c^2)`

D

`(4s^2 - a^2 – b^2-c^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given that \( a + b + c = 2s \), we need to find the value of the expression: \[ (s - a)^2 + (s - b)^2 + (s - c)^2 + s^2 \] ### Step-by-Step Solution: 1. **Expand Each Square**: We start by expanding each term in the expression: \[ (s - a)^2 = s^2 - 2sa + a^2 \] \[ (s - b)^2 = s^2 - 2sb + b^2 \] \[ (s - c)^2 = s^2 - 2sc + c^2 \] 2. **Combine the Expanded Terms**: Now, we can substitute these expansions back into the original expression: \[ (s - a)^2 + (s - b)^2 + (s - c)^2 + s^2 = (s^2 - 2sa + a^2) + (s^2 - 2sb + b^2) + (s^2 - 2sc + c^2) + s^2 \] 3. **Simplify the Expression**: Combine like terms: \[ = s^2 + s^2 + s^2 + s^2 - 2sa - 2sb - 2sc + a^2 + b^2 + c^2 \] \[ = 4s^2 - 2s(a + b + c) + (a^2 + b^2 + c^2) \] 4. **Substitute \( a + b + c \)**: We know from the problem statement that \( a + b + c = 2s \). Substitute this into the expression: \[ = 4s^2 - 2s(2s) + (a^2 + b^2 + c^2) \] \[ = 4s^2 - 4s^2 + (a^2 + b^2 + c^2) \] 5. **Final Result**: The terms \( 4s^2 - 4s^2 \) cancel out, leaving us with: \[ = a^2 + b^2 + c^2 \] Thus, the value of the expression \( (s - a)^2 + (s - b)^2 + (s - c)^2 + s^2 \) is: \[ \boxed{a^2 + b^2 + c^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2s = a + b + c , then the value of (s - a)^2 + (s - b)^2 + (s - c)^2 + s^2 - a^2 - b^2 - c^2 will be :

If a+b+c=2s, then the value of (s-a)^(2)+(s-b)^(2)+(s-c)^(2)+s^(2) will be s^(2)-a^(2)-b^(2)-c^(2)-c^(2)(b)s^(2)+a^(2)+b^(2)+c^(2)(c)a^(2)+b^(2)+c^(2)(d)4s^(2)-a^(2)-b^(2)-c^(2)

If a + b+ c =2s , thent the value of (s-a)^(2) + (s-b)^(2) +( s-c)^2 will be

If 2x=a+b+c , then prove that, (s-a)^(2)+(s-b)^(2) +(s-c)^(2) +s^(2)=a^(2)+b^(2)+c^(2) .

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If (s-a) +(s-b) +(s-c) =s , then the vlaue of ((s-a)^(2) +(s-b)^(2) +(s-c)^(2) +s^(2))/(a^(2) +b^(2)+c^(2)) will be