Home
Class 14
MATHS
The value of (3)/(15) +(13)/(14)-(19)/(2...

The value of `(3)/(15) +(13)/(14)-(19)/(21) +(31)/(35) -(23)/(30)` is :

A

`(2)/(5)`

B

`(1)/(3)`

C

`(12)/(35)`

D

`(8)/(21)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{3}{15} + \frac{13}{14} - \frac{19}{21} + \frac{31}{35} - \frac{23}{30}\), we will follow these steps: ### Step 1: Simplify Individual Fractions First, we can simplify \(\frac{3}{15}\): \[ \frac{3}{15} = \frac{1}{5} \] So, the expression becomes: \[ \frac{1}{5} + \frac{13}{14} - \frac{19}{21} + \frac{31}{35} - \frac{23}{30} \] ### Step 2: Find the LCM of the Denominators The denominators are \(5, 14, 21, 35, 30\). We need to find the least common multiple (LCM) of these numbers. - The prime factorization is: - \(5 = 5^1\) - \(14 = 2^1 \times 7^1\) - \(21 = 3^1 \times 7^1\) - \(35 = 5^1 \times 7^1\) - \(30 = 2^1 \times 3^1 \times 5^1\) The LCM will take the highest power of each prime: \[ \text{LCM} = 2^1 \times 3^1 \times 5^1 \times 7^1 = 210 \] ### Step 3: Convert Each Fraction to Have the Same Denominator Now, we convert each fraction to have a denominator of \(210\): - For \(\frac{1}{5}\): \[ \frac{1}{5} = \frac{1 \times 42}{5 \times 42} = \frac{42}{210} \] - For \(\frac{13}{14}\): \[ \frac{13}{14} = \frac{13 \times 15}{14 \times 15} = \frac{195}{210} \] - For \(\frac{19}{21}\): \[ \frac{19}{21} = \frac{19 \times 10}{21 \times 10} = \frac{190}{210} \] - For \(\frac{31}{35}\): \[ \frac{31}{35} = \frac{31 \times 6}{35 \times 6} = \frac{186}{210} \] - For \(\frac{23}{30}\): \[ \frac{23}{30} = \frac{23 \times 7}{30 \times 7} = \frac{161}{210} \] ### Step 4: Substitute Back into the Expression Now we substitute these back into the expression: \[ \frac{42}{210} + \frac{195}{210} - \frac{190}{210} + \frac{186}{210} - \frac{161}{210} \] ### Step 5: Combine the Numerators Combine the numerators over the common denominator: \[ \frac{42 + 195 - 190 + 186 - 161}{210} \] Calculating the numerator: \[ 42 + 195 = 237 \] \[ 237 - 190 = 47 \] \[ 47 + 186 = 233 \] \[ 233 - 161 = 72 \] Thus, we have: \[ \frac{72}{210} \] ### Step 6: Simplify the Fraction Now we simplify \(\frac{72}{210}\): \[ \text{GCD of 72 and 210 is 6} \] \[ \frac{72 \div 6}{210 \div 6} = \frac{12}{35} \] ### Final Result The value of the expression is: \[ \frac{12}{35} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : ((3)/(5) xx (-15)/(21)) +((-9)/(14) +(45)/(28)) -((2)/(3) xx (30)/(12))

The value of log ((18)/(14))+log((35)/(48))-log((15)/(16))=

If (x)/(2y)=(6)/(7), the value of (x-y)/(x+y)+(14)/(19) is(a) (13)/(19)(b)(15)/(19)(c)1(d)1(1)/(19)

Find the value of k in (26)/(21) : (24)/(9) :: k : (14)/(13)

Which part contains the fractions in ascending order? (11)/(14),(16)/(19),(19)/(21) (b) (16)/(19),(11)/(14),(19)/(21) (c) (16)/(19),(19)/(21),(11)/(14) (d) (19)/(21),(11)/(14),(16)/(19)

((-16)/35)-:((-15)/14)

A five digits number of the form xyzyx is choosen,probability that x

If the price of oil is increased by 30%, then by how much percent a family should reduce its consumption so that the expenditure would remain,the same? 15(1)/(23)% b.23(1)/(13)% c.15(3)/(14)% d.76(12)/(13)%

The value of (1.2.3…..9).(11.12.13…19).(21.22.23….29).(31.32.33……39).(41.42.43….49).(51.52.53…..59)……(91.92….99)