Home
Class 14
MATHS
If 3sec^(2)x - 2tan^(2)x = 6 and 0^(@) l...

If `3sec^(2)x - 2tan^(2)x = 6` and `0^(@) le x le 90^(@)` then x = ?

A

`60^(@)`

B

`30^(@)`

C

`45^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \sec^2 x - 2 \tan^2 x = 6\) for \(0^\circ \leq x \leq 90^\circ\), we can follow these steps: ### Step 1: Use the identity for \(\sec^2 x\) We know that: \[ \sec^2 x = 1 + \tan^2 x \] Substituting this identity into the equation gives us: \[ 3(1 + \tan^2 x) - 2 \tan^2 x = 6 \] ### Step 2: Simplify the equation Expanding the equation: \[ 3 + 3 \tan^2 x - 2 \tan^2 x = 6 \] This simplifies to: \[ 3 + \tan^2 x = 6 \] ### Step 3: Isolate \(\tan^2 x\) Now, subtract 3 from both sides: \[ \tan^2 x = 6 - 3 \] \[ \tan^2 x = 3 \] ### Step 4: Take the square root Taking the square root of both sides gives us: \[ \tan x = \sqrt{3} \quad \text{or} \quad \tan x = -\sqrt{3} \] Since \(0^\circ \leq x \leq 90^\circ\), we only consider the positive value: \[ \tan x = \sqrt{3} \] ### Step 5: Find the angle \(x\) The angle \(x\) for which \(\tan x = \sqrt{3}\) is: \[ x = 60^\circ \] ### Conclusion Thus, the solution to the equation \(3 \sec^2 x - 2 \tan^2 x = 6\) in the interval \(0^\circ \leq x \leq 90^\circ\) is: \[ \boxed{60^\circ} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 8 sec^(2)x- 7 tan^(2)x= 11 and 0^(@) le x le 90^(@) , then x= ?

If 10 sec^(2)x - 9tan^(2)x= 13 and 0^@le x lt 90^@ then x = _____

If 2cos^(2)x- sin^(2)x= -0.25 and 0^(@) le x lt 90^(@) , then x= ?

2sec^2x-tan^2x=5and 0^@ le xle 90^@ then x=?

If f (x) =x ^(2) -6x + 9, 0 le x le 4, then f(3) =

If f (x) =x ^(2) -6x +5,0 le x le 4 then f (8)=

If x,y,z are three real numbers such that x+ y +z =4 and x^(2) + y^(2) +z^(2) =6 ,then (1) 2/3 le x,y,z le 2 (2) 0 le x,y,z le 2 (3) 1 le x,y,z le 3 (4) 2 le x,y,z le 3

If sin x = (3)/(5), 0 le x le 90^(@) , then the value of cot x.sec x is :