Home
Class 14
MATHS
x = (sqrt3+1)/2 , find 4x^3 +2x^2 -8x +7...

`x = (sqrt3+1)/2` , find `4x^3 +2x^2 -8x +7`

A

10

B

4

C

8

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(4x^3 + 2x^2 - 8x + 7\) given that \(x = \frac{\sqrt{3}+1}{2}\), we will substitute the value of \(x\) into the expression and simplify step by step. ### Step 1: Substitute \(x\) into the expression We start with the expression: \[ 4x^3 + 2x^2 - 8x + 7 \] Substituting \(x = \frac{\sqrt{3}+1}{2}\): \[ 4\left(\frac{\sqrt{3}+1}{2}\right)^3 + 2\left(\frac{\sqrt{3}+1}{2}\right)^2 - 8\left(\frac{\sqrt{3}+1}{2}\right) + 7 \] ### Step 2: Calculate \(x^2\) and \(x^3\) First, we calculate \(x^2\): \[ x^2 = \left(\frac{\sqrt{3}+1}{2}\right)^2 = \frac{(\sqrt{3}+1)^2}{4} = \frac{3 + 2\sqrt{3} + 1}{4} = \frac{4 + 2\sqrt{3}}{4} = 1 + \frac{\sqrt{3}}{2} \] Next, we calculate \(x^3\): \[ x^3 = \left(\frac{\sqrt{3}+1}{2}\right)^3 = \frac{(\sqrt{3}+1)^3}{8} = \frac{3\sqrt{3} + 3 + 1 + \sqrt{3}}{8} = \frac{4 + 4\sqrt{3}}{8} = \frac{1 + \sqrt{3}}{2} \] ### Step 3: Substitute \(x^2\) and \(x^3\) back into the expression Now we can substitute \(x^2\) and \(x^3\) back into the expression: \[ 4\left(\frac{1+\sqrt{3}}{2}\right) + 2\left(1 + \frac{\sqrt{3}}{2}\right) - 8\left(\frac{\sqrt{3}+1}{2}\right) + 7 \] ### Step 4: Simplify each term Calculating each term: 1. \(4x^3 = 4 \cdot \frac{1+\sqrt{3}}{2} = 2(1+\sqrt{3}) = 2 + 2\sqrt{3}\) 2. \(2x^2 = 2(1 + \frac{\sqrt{3}}{2}) = 2 + \sqrt{3}\) 3. \(-8x = -8\left(\frac{\sqrt{3}+1}{2}\right) = -4(\sqrt{3}+1) = -4\sqrt{3} - 4\) 4. The constant \(7\) remains as is. ### Step 5: Combine all terms Now we combine all the terms: \[ (2 + 2\sqrt{3}) + (2 + \sqrt{3}) + (-4\sqrt{3} - 4) + 7 \] Combining like terms: - Constant terms: \(2 + 2 - 4 + 7 = 7\) - Terms with \(\sqrt{3}\): \(2\sqrt{3} + \sqrt{3} - 4\sqrt{3} = -1\sqrt{3}\) Thus, the final result is: \[ 7 - \sqrt{3} \] ### Final Answer: \[ \boxed{7 - \sqrt{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=3+sqrt(7) , find x^2+(1)/x^(2)

If x=3+sqrt(8) , find x^2+(1)/x^(2)

If x=(sqrt(3)+1)/(2), find the value of 4x^(3)+2x^(2)-8x+7

If x = (1)/(3-sqrt(8)) , find the value of x^(3)- 2x^(2) -78x + 5

If x=(1)/(2+sqrt(3)) of ,find the value 2x^(3)-7x^(2)-2x+1

If x=1/(2+sqrt3) ,find the value of x^(3)-x^(2)-11x+4

If x = 7 + 4 sqrt(3) , y = 7 - 4 sqrt(3) , find the value of (1)/(x^(2)) + (1)/(y^(2)) .

If x=2+sqrt3 then find the valule of x^4-8x^3+16x^2 is: यदि x=2+sqrt3 है, तो x^4-8x^3+16x^2 का मान ज्ञात कीजिए ।

If A = 4x^(3) -8x^(2), B = 7x^(3) -5x + 3 and C = 3x^(3) + x - 11 , then find 2A -3B + 4C