Home
Class 14
MATHS
If tanx = sqrt3 + 2, then the value of t...

If tanx = `sqrt3` + 2, then the value of tanx - cotx is

A

2

B

`2sqrt3`

C

`sqrt3-2`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan x - \cot x \) given that \( \tan x = \sqrt{3} + 2 \). ### Step-by-step Solution: 1. **Identify the given value**: \[ \tan x = \sqrt{3} + 2 \] 2. **Express cotangent in terms of tangent**: \[ \cot x = \frac{1}{\tan x} = \frac{1}{\sqrt{3} + 2} \] 3. **Rationalize the denominator of cotangent**: To rationalize \( \cot x \), we multiply the numerator and the denominator by the conjugate of the denominator: \[ \cot x = \frac{1}{\sqrt{3} + 2} \cdot \frac{\sqrt{3} - 2}{\sqrt{3} - 2} = \frac{\sqrt{3} - 2}{(\sqrt{3} + 2)(\sqrt{3} - 2)} \] 4. **Calculate the denominator**: Using the difference of squares: \[ (\sqrt{3} + 2)(\sqrt{3} - 2) = 3 - 4 = -1 \] Thus, \[ \cot x = \frac{\sqrt{3} - 2}{-1} = 2 - \sqrt{3} \] 5. **Now calculate \( \tan x - \cot x \)**: \[ \tan x - \cot x = (\sqrt{3} + 2) - (2 - \sqrt{3}) \] Simplifying this expression: \[ = \sqrt{3} + 2 - 2 + \sqrt{3} = 2\sqrt{3} \] 6. **Final answer**: Therefore, the value of \( \tan x - \cot x \) is: \[ \tan x - \cot x = 2\sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (cotx-tanx)/(cot2x) is

If 5sin x =4 , then the numberical value of ((tanx-cotx)/(secx-tanx))((cos^(4)x-sin^(4)x)/(2cos^(2)x-1)) ?

General solution of tanx+cotx=2 is

2tanx-cotx+1=0

(tanx-cotx)^(2)

If tanx= 3cotx " then " x=?

If secx=sqrt2 and (3pi)/(2)lt x lt 2pi find the value of (1-tanx-cosecx)/(1-cotx-cosecx)

If A= [{:( 1,-tanx ),( tanx ,1):}] then the value of [A^(T) A^(-1) ] is

If int_(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the value of m is equal to

What is the value of (cotx)/(1-tanx)+(tanx)/(1-cotx) ?