Home
Class 14
MATHS
If x+y=3, xy=2, find the value of x^3-y^...

If x+y=3, xy=2, find the value of `x^3-y^3`.

A

13

B

11

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^3 - y^3 \) given that \( x + y = 3 \) and \( xy = 2 \), we can use the formula for the difference of cubes: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \] ### Step 1: Find \( x - y \) We know: \[ x + y = 3 \] \[ xy = 2 \] Using the identity \( (x + y)^2 = x^2 + 2xy + y^2 \), we can express \( x^2 + y^2 \): \[ (x + y)^2 = x^2 + 2xy + y^2 \] \[ 3^2 = x^2 + 2(2) + y^2 \] \[ 9 = x^2 + 4 + y^2 \] \[ x^2 + y^2 = 9 - 4 = 5 \] Now, we can find \( x^2 + xy + y^2 \): \[ x^2 + xy + y^2 = x^2 + y^2 + xy = 5 + 2 = 7 \] ### Step 2: Find \( x - y \) To find \( x - y \), we can use the identity \( (x - y)^2 = (x + y)^2 - 4xy \): \[ (x - y)^2 = (x + y)^2 - 4xy \] \[ = 3^2 - 4(2) \] \[ = 9 - 8 = 1 \] \[ x - y = \sqrt{1} = 1 \quad \text{or} \quad x - y = -\sqrt{1} = -1 \] ### Step 3: Calculate \( x^3 - y^3 \) Now we can substitute \( x - y \) and \( x^2 + xy + y^2 \) into the formula: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) = (1)(7) = 7 \] Thus, the value of \( x^3 - y^3 \) is \( 7 \). ### Final Answer: \[ \boxed{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2x+3y=13 and xy=6, find the value of 3x^(3)+27y^(3)

If 2x+3y=13 and xy=6, find the value of 8x^(3)+27y^(3)

If 3x-2y=11 and xy=12, find the value of 27x^(3)-8y^(3)

If 2x-3y=10 and xy=16 , find the value of 8x^(3)-27y^(3) .

If x-y= -1 , then find the value of x^3 - y^3 +3xy

If 2x+3y=13 and xy=6, find the value of 8x^(3)+2yy^(3)

If 2x+3y=8 and xy=2, find the value of 4x^(2)+9y^(2)

If 3x+5y=11 and xy=2, find the value of 9x^(2)+25y^(2)

If x+y=12 and xy=27; find the value of x^(3)+y^(3)