Home
Class 14
MATHS
Simplify : (5/8+3/4) of 4/(11) divide 3/...

Simplify : `(5/8+3/4) of 4/(11) divide 3/(16) -1/2 xx 3/4=?`

A

`3 2/(13)`

B

`3 4/(11)`

C

`2 7/(24)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \left( \frac{5}{8} + \frac{3}{4} \right) \times \frac{4}{11} \div \frac{3}{16} - \frac{1}{2} \times \frac{3}{4} \), we will follow the order of operations (BODMAS/BIDMAS). ### Step-by-Step Solution: 1. **Calculate the sum inside the parentheses:** \[ \frac{5}{8} + \frac{3}{4} \] To add these fractions, we need a common denominator. The least common multiple (LCM) of 8 and 4 is 8. We can convert \( \frac{3}{4} \) to have a denominator of 8: \[ \frac{3}{4} = \frac{3 \times 2}{4 \times 2} = \frac{6}{8} \] Now we can add: \[ \frac{5}{8} + \frac{6}{8} = \frac{11}{8} \] **Hint:** Find a common denominator to add fractions. 2. **Substitute back into the expression:** The expression now looks like: \[ \left( \frac{11}{8} \right) \times \frac{4}{11} \div \frac{3}{16} - \frac{1}{2} \times \frac{3}{4} \] 3. **Calculate \( \frac{11}{8} \times \frac{4}{11} \):** The \( 11 \) in the numerator and denominator cancels out: \[ \frac{11 \times 4}{8 \times 11} = \frac{4}{8} = \frac{1}{2} \] **Hint:** Cancel common factors in multiplication. 4. **Now substitute this back into the expression:** \[ \frac{1}{2} \div \frac{3}{16} - \frac{1}{2} \times \frac{3}{4} \] 5. **Calculate \( \frac{1}{2} \div \frac{3}{16} \):** Dividing by a fraction is the same as multiplying by its reciprocal: \[ \frac{1}{2} \times \frac{16}{3} = \frac{16}{6} = \frac{8}{3} \] **Hint:** Remember that dividing by a fraction means multiplying by its reciprocal. 6. **Calculate \( \frac{1}{2} \times \frac{3}{4} \):** \[ \frac{1 \times 3}{2 \times 4} = \frac{3}{8} \] **Hint:** Multiply the numerators and denominators directly. 7. **Now substitute back into the expression:** \[ \frac{8}{3} - \frac{3}{8} \] 8. **Find a common denominator to subtract:** The LCM of 3 and 8 is 24. Convert both fractions: \[ \frac{8}{3} = \frac{8 \times 8}{3 \times 8} = \frac{64}{24} \] \[ \frac{3}{8} = \frac{3 \times 3}{8 \times 3} = \frac{9}{24} \] 9. **Now subtract:** \[ \frac{64}{24} - \frac{9}{24} = \frac{64 - 9}{24} = \frac{55}{24} \] **Hint:** When subtracting fractions, ensure they have the same denominator. 10. **Convert to a mixed number (if necessary):** \[ \frac{55}{24} = 2 \frac{7}{24} \] ### Final Answer: The simplified expression is \( 2 \frac{7}{24} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: 5/8+2/5+3/4

Simplify: : 1/2 xx 3/4 xx 8/9

Simplify: 37-24 " of "4 divide 16 xx 5

Simplify: 3/4+7/(16)+5/8

Simplify: 10(2)/5xx8(4)/5 divided by 4(2)/5

Simplify: 1'1/11 xx 3'1/11 ÷ 4 '7/11

Simplify : 25 + [14 - 18 + {12 " of " 5-(16 divide 4 xx 3 -2)}]

Simplify: 9/(11)-4/(15) (ii) 8 1/2-3 5/8