Home
Class 14
MATHS
If a+1/a = -6, find the value of a^(3) ...

If `a+1/a = -6`, find the value of `a^(3) + 1/a^(3)`

A

216

B

`-198`

C

`-216`

D

198

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a + \frac{1}{a} = -6 \) and we need to find \( a^3 + \frac{1}{a^3} \), we can follow these steps: ### Step 1: Use the identity for \( a^3 + \frac{1}{a^3} \) We know the formula: \[ a^3 + \frac{1}{a^3} = \left( a + \frac{1}{a} \right)^3 - 3 \left( a + \frac{1}{a} \right) \] ### Step 2: Substitute the known value From the problem, we have: \[ a + \frac{1}{a} = -6 \] Now, we can substitute this value into the formula: \[ a^3 + \frac{1}{a^3} = (-6)^3 - 3(-6) \] ### Step 3: Calculate \( (-6)^3 \) Calculating \( (-6)^3 \): \[ (-6)^3 = -216 \] ### Step 4: Calculate \( -3(-6) \) Calculating \( -3(-6) \): \[ -3(-6) = 18 \] ### Step 5: Combine the results Now, we combine the results from Steps 3 and 4: \[ a^3 + \frac{1}{a^3} = -216 + 18 \] \[ a^3 + \frac{1}{a^3} = -198 \] ### Final Answer Thus, the value of \( a^3 + \frac{1}{a^3} \) is: \[ \boxed{-198} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a + 1/a = 2 , find the value of a^3 + 1/a^3

If a - 1/a = 9 , find the value of a^3 - 1/a^3

Find the value of 1^3 is

If a+1/a=1 find the value of a^3+1/a^3

If a+1/a=1 find the value of a^3+1/a^3

Find the value of ( 1/3 )^(-3 )

If a+ (1)/(a)= - sqrt3 , find the value of a^(3) + (1)/(a^(3))

Find the value of [ 5 1/6 ]^( -3/4 ) is