Home
Class 14
MATHS
One of the two inlet pipes works twice a...

One of the two inlet pipes works twice as efficiently as the other. The two, working alongside a drain pipe that can empty a cistern all by itself in 12 hours, can fill the empty cistern in 12 hours. How many hours will the less efficient inlet pipe take to fill the empty cistern by itself?

A

9

B

15

C

12

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine how long the less efficient inlet pipe takes to fill the cistern by itself. We know that one pipe works twice as efficiently as the other, and together they can fill the cistern in 12 hours while a drain pipe can empty it in 12 hours. ### Step-by-Step Solution: 1. **Define the Efficiency of the Pipes:** Let the efficiency of the less efficient inlet pipe (Pipe B) be \( r \) (in cisterns per hour). Therefore, the efficiency of the more efficient inlet pipe (Pipe A) will be \( 2r \). 2. **Determine the Efficiency of the Drain Pipe:** The drain pipe can empty the cistern in 12 hours, which means its efficiency is \( -\frac{1}{12} \) (since it is emptying the cistern). 3. **Set Up the Equation:** When both inlet pipes and the drain pipe are working together, their combined efficiency is: \[ r + 2r - \frac{1}{12} = 12 \text{ hours} \] This means they can fill the cistern at a rate of \( \frac{1}{12} \) of the cistern per hour. 4. **Combine the Efficiencies:** The equation can be simplified: \[ 3r - \frac{1}{12} = \frac{1}{12} \] 5. **Solve for \( r \):** Rearranging the equation gives: \[ 3r = \frac{1}{12} + \frac{1}{12} = \frac{2}{12} = \frac{1}{6} \] Therefore, \[ r = \frac{1}{18} \] 6. **Determine the Time for Pipe B:** Since \( r \) is the efficiency of Pipe B, the time taken by Pipe B to fill the cistern alone is the reciprocal of its efficiency: \[ \text{Time for Pipe B} = \frac{1}{r} = \frac{1}{\frac{1}{18}} = 18 \text{ hours} \] ### Final Answer: The less efficient inlet pipe (Pipe B) will take **36 hours** to fill the empty cistern by itself.
Promotional Banner

Similar Questions

Explore conceptually related problems

One tap can fill a cistern in 2 hours and another can other can empty the cistern in 3 hours. How long will they take to fill the cistern if both the taps are opened ?

One pipe can fill a cistren in 3 hours less than the other. The two pipes together can fill the cistern in 6 hours 40 minutes. Find the time that each pipe will take to fill the cistern.

An outlet pipe can empty a cistern in 5h . In what time will the pipe empty 2/5 part of cistern ?

A cistern normally takes 6 hours to be filled by a tap but because of a leak, 2 hours more. In how many hours will the leak empty a full cistern ?

A cistern normally takes 10 hours to be filled by a tap. But because of a leak, it takes 2 hours more. In how many hours will the leak empty a full cistern?

A tap A can fill a cistern in 4 hours and the tap B can empty the full cistern in 6 hours. If both the taps are opened together in the empty cistern, in how much time will the cistern be filled up?

Two tap can fill a cistern in 8 hours and 10 hours respectively.A third tap can empty it in 6 hours.How long will they take to fill the cistern if all the taps are opened.

Tap A can fill a cistern in 8 hours and tap B can empty it in 12 hours.How long will it take to fill the cistern if both of them are opened together?