Home
Class 14
MATHS
(3)/(12) of (((2)/(5)+(4)/(15)))/(((3)/(...

`(3)/(12)` of `(((2)/(5)+(4)/(15)))/(((3)/(5)-(2)/(5)))=`?

A

`(5)/(7)`

B

`(5)/(6)`

C

`(6)/(5)`

D

`(2)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{3}{12} \times \frac{\left(\frac{2}{5} + \frac{4}{15}\right)}{\left(\frac{3}{5} - \frac{2}{5}\right)}\), we will follow these steps: ### Step 1: Simplify the expression inside the parentheses First, we need to simplify \(\frac{2}{5} + \frac{4}{15}\). To do this, we need a common denominator. The least common multiple (LCM) of 5 and 15 is 15. - Convert \(\frac{2}{5}\) to have a denominator of 15: \[ \frac{2}{5} = \frac{2 \times 3}{5 \times 3} = \frac{6}{15} \] - Now add \(\frac{6}{15} + \frac{4}{15}\): \[ \frac{6}{15} + \frac{4}{15} = \frac{6 + 4}{15} = \frac{10}{15} \] ### Step 2: Simplify the denominator Next, we simplify \(\frac{3}{5} - \frac{2}{5}\). Since the denominators are the same, we can subtract directly: \[ \frac{3}{5} - \frac{2}{5} = \frac{3 - 2}{5} = \frac{1}{5} \] ### Step 3: Substitute back into the original expression Now we substitute back into the original expression: \[ \frac{3}{12} \times \frac{\frac{10}{15}}{\frac{1}{5}} \] ### Step 4: Simplify the fraction To simplify \(\frac{\frac{10}{15}}{\frac{1}{5}}\), we can multiply by the reciprocal: \[ \frac{10}{15} \times \frac{5}{1} = \frac{10 \times 5}{15 \times 1} = \frac{50}{15} \] ### Step 5: Simplify \(\frac{50}{15}\) Now we simplify \(\frac{50}{15}\): \[ \frac{50}{15} = \frac{10}{3} \] ### Step 6: Multiply by \(\frac{3}{12}\) Now we multiply \(\frac{3}{12}\) by \(\frac{10}{3}\): \[ \frac{3}{12} \times \frac{10}{3} \] ### Step 7: Cancel out common factors We can cancel the 3 in the numerator and denominator: \[ \frac{1}{12} \times 10 = \frac{10}{12} \] ### Step 8: Simplify \(\frac{10}{12}\) Finally, we simplify \(\frac{10}{12}\): \[ \frac{10}{12} = \frac{5}{6} \] ### Final Answer The final value is \(\frac{5}{6}\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

5(1)/(5)+2(2)/(15)+3(2)/(3)=?

Name the property of multiplication shown by each of the following statements: (i) (-12)/(5) xx (3)/(4)=(3)/(4)xx (-12)/(5) (ii) (-8)/(15) xx 1=(-8)/(15) (iii) ((-2)/(3) xx (7)/(8)) xx (-5)/(7) = (-2)/(3) xx ((7)/(8) xx (-5)/(7)) (iv) (-2)/(3) xx 0=0 (v) (2)/(5) xx ((-4)/(5) +(-3)/(10)) = ((2)/(5) xx (-4)/(5)) +((2)/(5)xx (-3)/(10))

If A=[(2)/(3)1(5)/(3)(1)/(3)(2)/(3)(4)/(3)(7)/(3)2(2)/(3)] and B=[(2)/(3)(2)/(5)1(1)/(5)(2)/(5)(4)/(5)(4)/(5)(7)/(3)(6)/(5)(2)/(5)], then compute 3A_(-)=5B

((x)/(3)-(2)/(5))/((3)/(4)-2x)=(16)/(15)

4(12)/(125)3=?1(2)/(5)(b)1(3)/(5)(c)1(4)/(5)(d)2(2)/(5)

The value of 3(1)/(5) - [2(1)/(2) - ((5)/(6) - ((2)/(5) + (3)/(10) - (4)/(15))] is :

Simplify: ((3)/(11)x(5)/(6))-((9)/(12)x(4)/(3))+((5)/(13)x(6)/(15))

4(1)/(10)-[2(1)/(2)-{(5)/(6)-((2)/(5)+(3)/(10)-(4)/(15))

The value of (9)/(15) " of " ((2)/(3) // (2)/(3) " of " (3)/(2)) ÷ ((3)/(4) xx (3)/(4) ÷ (3)/(4) " of " (4)/(3)) " of " ((5)/(4) ÷ (5)/(2) xx (2)/(5) " of " (4)/(5)) is :