Home
Class 14
MATHS
Find Value of:- 4+3 xx 4 +3 xx 4^(2) +3...

Find Value of:-
`4+3 xx 4 +3 xx 4^(2) +3xx 4^(3) +3 xx 4^(4) +3 xx 4^(5) = `?
(a)`5 xx 4^(5)`
(b)`9xx 4^(4)`
(c)`4^(6)`
(d)`10 xx 4^(4)`

A

`5 xx 4^(5)`

B

`9xx 4^(4)`

C

`4^(6)`

D

`10 xx 4^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(4 + 3 \times 4 + 3 \times 4^2 + 3 \times 4^3 + 3 \times 4^4 + 3 \times 4^5\), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ 4 + 3 \times 4 + 3 \times 4^2 + 3 \times 4^3 + 3 \times 4^4 + 3 \times 4^5 \] ### Step 2: Factor Out Common Terms Notice that \(4\) can be factored out from all the terms after the first: \[ = 4 + 3(4 + 4^2 + 4^3 + 4^4 + 4^5) \] ### Step 3: Simplify the Expression Inside the Parentheses The expression inside the parentheses is a geometric series with the first term \(4\) and a common ratio of \(4\). The sum of a geometric series can be calculated using the formula: \[ S_n = a \frac{(r^n - 1)}{r - 1} \] where \(a\) is the first term, \(r\) is the common ratio, and \(n\) is the number of terms. In our case: - \(a = 4\) - \(r = 4\) - \(n = 5\) (since we have \(4, 4^2, 4^3, 4^4, 4^5\)) Thus, the sum becomes: \[ S = 4 \frac{(4^5 - 1)}{4 - 1} = 4 \frac{(4^5 - 1)}{3} \] ### Step 4: Substitute Back into the Expression Now, substituting back, we have: \[ = 4 + 3 \left(4 \frac{(4^5 - 1)}{3}\right) \] The \(3\) cancels out: \[ = 4 + 4(4^5 - 1) \] \[ = 4 + 4 \times 4^5 - 4 \] \[ = 4 \times 4^5 \] ### Step 5: Simplify Further This simplifies to: \[ = 4^6 \] ### Conclusion Thus, the value of the expression is: \[ \boxed{4^6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the unit digit of 3^6 xx 4^7 xx 6^3 xx 7^4 xx 8^2 xx 9^5 .

The value of 2xx 2 + 4 xx 4 + 2 " of " 3 xx 6 - 7 xx (5 + 4 -: 2 ) is :

If 4 xx 9 xx 3= 4 and 5 xx 3 xx 1=3 , then 9 xx 9 xx 7=?

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

The last digit of the expression 4 xx 9^2 xx 4^3 xx 9^4 xx 4^5 xx 9^6 xx …..xx 4^(99) xx 9^(100) is:

(3/2 xx (-7)/4) - ((-5)/2 xx 3/4)

overset(4^(2) + 4)(5) + 5 xx 2 - 3 of 4 is :

(3/4) xx(3/4) xx(3/4)