Home
Class 14
MATHS
If sqrt(45)+sqrt(20)=11.180 find the val...

If `sqrt(45)+sqrt(20)=11.180` find the value of `sqrt(180)+4 sqrt(5)`.

A

`22.360`

B

`24.595`

C

`20.124`

D

`17.888`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start from the given equation and work our way to find the value of \( \sqrt{180} + 4\sqrt{5} \). ### Step 1: Understand the Given Information We are given: \[ \sqrt{45} + \sqrt{20} = 11.180 \] ### Step 2: Simplify the Square Roots We can simplify \( \sqrt{45} \) and \( \sqrt{20} \): \[ \sqrt{45} = \sqrt{9 \times 5} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5} \] \[ \sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5} \] ### Step 3: Combine the Simplified Roots Now, we can combine the simplified square roots: \[ \sqrt{45} + \sqrt{20} = 3\sqrt{5} + 2\sqrt{5} = (3 + 2)\sqrt{5} = 5\sqrt{5} \] ### Step 4: Relate to the Given Value From the information provided, we know: \[ 5\sqrt{5} = 11.180 \] To find \( \sqrt{5} \), we can divide both sides by 5: \[ \sqrt{5} = \frac{11.180}{5} = 2.236 \] ### Step 5: Find \( \sqrt{180} + 4\sqrt{5} \) Next, we need to calculate \( \sqrt{180} + 4\sqrt{5} \): First, simplify \( \sqrt{180} \): \[ \sqrt{180} = \sqrt{36 \times 5} = \sqrt{36} \cdot \sqrt{5} = 6\sqrt{5} \] Now, substitute \( \sqrt{5} \) into the expression: \[ \sqrt{180} + 4\sqrt{5} = 6\sqrt{5} + 4\sqrt{5} = (6 + 4)\sqrt{5} = 10\sqrt{5} \] ### Step 6: Substitute \( \sqrt{5} \) into the Expression Now, we substitute the value of \( \sqrt{5} \): \[ 10\sqrt{5} = 10 \cdot 2.236 = 22.36 \] ### Final Answer Thus, the value of \( \sqrt{180} + 4\sqrt{5} \) is: \[ \boxed{22.36} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sqrt(11.981+7sqrt(1.2996))

If sqrt(15)= 3.87 find the value of sqrt3/sqrt5

If A=5+2sqrt(6), find the value of sqrt(A)+(1)/(sqrt(A))

find the value sqrt(5)/(sqrt(7)-sqrt(3))

find the value (sqrt(5)+sqrt(7))(2+sqrt(5))