Home
Class 14
MATHS
If Tan A=15/8 and Tan B=7/24, then Cos (...

If Tan `A=15/8` and Tan `B=7/24`, then Cos `(A+B)=?`

A

`87/(425)`

B

`304/425`

C

`297/425`

D

`416/425`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \cos(A + B) \) given that \( \tan A = \frac{15}{8} \) and \( \tan B = \frac{7}{24} \). ### Step-by-Step Solution: 1. **Use the Cosine Addition Formula**: The formula for \( \cos(A + B) \) is: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] 2. **Find \( \sin A \) and \( \cos A \)**: Given \( \tan A = \frac{15}{8} \), we can represent this in a right triangle where: - Opposite side (perpendicular) = 15 - Adjacent side (base) = 8 To find the hypotenuse \( h \): \[ h = \sqrt{15^2 + 8^2} = \sqrt{225 + 64} = \sqrt{289} = 17 \] Now, we can find \( \sin A \) and \( \cos A \): \[ \sin A = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{15}{17} \] \[ \cos A = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{8}{17} \] 3. **Find \( \sin B \) and \( \cos B \)**: Given \( \tan B = \frac{7}{24} \), we can represent this in a right triangle where: - Opposite side (perpendicular) = 7 - Adjacent side (base) = 24 To find the hypotenuse \( h \): \[ h = \sqrt{7^2 + 24^2} = \sqrt{49 + 576} = \sqrt{625} = 25 \] Now, we can find \( \sin B \) and \( \cos B \): \[ \sin B = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{7}{25} \] \[ \cos B = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{24}{25} \] 4. **Substitute Values into the Cosine Addition Formula**: Now we substitute \( \sin A \), \( \cos A \), \( \sin B \), and \( \cos B \) into the formula: \[ \cos(A + B) = \left(\frac{8}{17} \cdot \frac{24}{25}\right) - \left(\frac{15}{17} \cdot \frac{7}{25}\right) \] 5. **Calculate Each Term**: - First term: \[ \frac{8 \cdot 24}{17 \cdot 25} = \frac{192}{425} \] - Second term: \[ \frac{15 \cdot 7}{17 \cdot 25} = \frac{105}{425} \] 6. **Combine the Results**: \[ \cos(A + B) = \frac{192}{425} - \frac{105}{425} = \frac{192 - 105}{425} = \frac{87}{425} \] ### Final Answer: \[ \cos(A + B) = \frac{87}{425} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If Tan A = (15)/(8) and Tan B = (7)/(24) , then Tan ( A - B ) = ? A. (304)/(297) B. (304)/(425) C. (416)/( 87) D. (87)/( 416)

If Tan A = (15)/(8) and Tan B = (7)/(24) , then Tan (A + B) = ? A. (416)/(87) B. (87)/(416) C. (304)/(297) D. (297)/(304)

If tan A =frac(15)(8) and tan B = frac (7)(24) then cos(A - B) = ? A) frac(297)(4215) B) frac(304)(425) C) frac(87)(425) D) frac(416)(425)

if 3tan A tan B=1 then 2cos(A+B)

If tan A=(1)/(7) and tan B=(1)/(3), show that cos2A=sin4B

If tan A=(17)/(18),tan B=(1)/(35) then cos(A+B)=

If tan A=1 and tan B=sqrt(3), evaluate cos A cos B-sin A sin B

If 8tan A=15, find sin A-cos A