Home
Class 14
MATHS
(8)^(2//3)=?...

`(8)^(2//3)`=?`

A

`sqrt4`

B

2

C

4

D

64

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (8)^{\frac{2}{3}} \), we can follow these steps: ### Step 1: Rewrite the base First, we can express 8 as a power of 2. We know that: \[ 8 = 2^3 \] So we can rewrite the expression: \[ (8)^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} \] ### Step 2: Apply the power of a power rule Using the power of a power rule, which states that \( (a^m)^n = a^{m \cdot n} \), we can simplify the expression: \[ (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} \] ### Step 3: Simplify the exponent Now we can simplify the exponent: \[ 3 \cdot \frac{2}{3} = 2 \] So we have: \[ 2^{3 \cdot \frac{2}{3}} = 2^2 \] ### Step 4: Calculate the final value Now we can calculate \( 2^2 \): \[ 2^2 = 4 \] Thus, the final answer is: \[ (8)^{\frac{2}{3}} = 4 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (2x-7)^3+(2x-8)^3+(2x-3)^3= 3(2x -7)(2x - 8)(2x- 3 ) , then what is the value of x?/ यदि (2x-7)^3+(2x-8)^3+(2x-3)^3= 3(2x − 7)(2x − 8)(2x − 3 ) है, तो x का मान ज्ञात करें |

If (2x+7)^3+(2x+8)^3+(2x+3)^3= 3(2x + 7)(2x +8)(2x +3) , then what is the value of x?/ यदि (2x+7)^3+(2x+8)^3+(2x+3)^3= 3(2x + 7)(2x +8)(2x +3) है, तो x का मान क्या होगा ?

If (2x-7)^3+(2x-8)^3+(2x-3)^3=3(2x-7)(2x-8)( 2x-3) , then what is the value of x? यदि (2x-7)^3+(2x-8)^3+(2x-3)^3=3(2x-7)(2x-8)( 2x-3) है तो x का मान क्या है?

If (x-7)^3+(2x+8)^3+(2x-3)^3= 3 (x - 7) (2x +8) (2x-3) , then what is the value of x? यदि (x-7)^3+(2x+8)^3+(2x-3)^3= 3 (x - 7) (2x +8) (2x-3) है, तो x का मान क्या होगा ?

If (x+7)^3+(2x+8)^3+(2x+3)^3= 3(x + 7) (2x +8) (2x + 3) , then what is the value of x? यदि (x+7)^3+(2x+8)^3+(2x+3)^3= 3(x + 7) (2x +8) (2x + 3) , है तो x का मान क्या है?

8x^(3) - 2x =?

Evaluate: 2 + (8)/(-9) + (-2)/(3)

{8+(2^4+3)}-:9=?