Home
Class 14
MATHS
If Sin x=4/5, then Sec^2x-1=?...

If Sin `x=4/5,` then `Sec^2x-1=?`

A

`16/25`

B

`25/9`

C

`9/16`

D

`16/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we need to find the value of \( \sec^2 x - 1 \) given that \( \sin x = \frac{4}{5} \), we can follow these steps: ### Step 1: Understand the relationship between sine and secant We know that: \[ \sec x = \frac{1}{\cos x} \] and from the Pythagorean identity, we have: \[ \sin^2 x + \cos^2 x = 1 \] ### Step 2: Calculate \( \cos x \) Given \( \sin x = \frac{4}{5} \), we can find \( \cos x \) using the Pythagorean identity: \[ \sin^2 x + \cos^2 x = 1 \] Substituting \( \sin x \): \[ \left(\frac{4}{5}\right)^2 + \cos^2 x = 1 \] \[ \frac{16}{25} + \cos^2 x = 1 \] \[ \cos^2 x = 1 - \frac{16}{25} \] \[ \cos^2 x = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \] ### Step 3: Calculate \( \sec^2 x \) Now that we have \( \cos^2 x \), we can find \( \sec^2 x \): \[ \sec^2 x = \frac{1}{\cos^2 x} = \frac{1}{\frac{9}{25}} = \frac{25}{9} \] ### Step 4: Calculate \( \sec^2 x - 1 \) Now we can find \( \sec^2 x - 1 \): \[ \sec^2 x - 1 = \frac{25}{9} - 1 = \frac{25}{9} - \frac{9}{9} = \frac{25 - 9}{9} = \frac{16}{9} \] ### Final Answer Thus, the value of \( \sec^2 x - 1 \) is: \[ \frac{16}{9} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x = (4)/(5) then sec x + Tan x = ?

If sin x = (4)/(5) then sec x + Tan x = ?

if sin x = (4)/(5) , then (sec x )/( sin x ) = ? A. (23)/(12) B. (25)/(4) C. (4)/(5) D. (25)/(12)

If sin^4x/2+cos^4x/3=1/5 then

If Cot x = (5)/(12) , then Sin x + (1)/("Cot x") + Sec x = ?

If tan(x/2)=cosec x-sin x" then (1+sec^(2)(x)/(2))^(2)=

If sin(x+y).sec(x-y)=1 then tan^(2)x+sin^(2)x+sec^(2)x=?