Home
Class 14
MATHS
Given w=-2,x=3,y=0 & Z=-1/2, Find the va...

Given `w=-2,x=3,y=0 & Z=-1/2,` Find the value of `w^2 sqrt((Z^2+y^2))`.

A

`+_2`

B

-2

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( w^2 \sqrt{(Z^2 + y^2)} \) given the values \( w = -2 \), \( x = 3 \), \( y = 0 \), and \( Z = -\frac{1}{2} \), we can follow these steps: ### Step 1: Calculate \( w^2 \) Given \( w = -2 \): \[ w^2 = (-2)^2 = 4 \] ### Step 2: Calculate \( Z^2 \) Given \( Z = -\frac{1}{2} \): \[ Z^2 = \left(-\frac{1}{2}\right)^2 = \frac{1}{4} \] ### Step 3: Calculate \( y^2 \) Given \( y = 0 \): \[ y^2 = 0^2 = 0 \] ### Step 4: Sum \( Z^2 + y^2 \) Now we can sum \( Z^2 \) and \( y^2 \): \[ Z^2 + y^2 = \frac{1}{4} + 0 = \frac{1}{4} \] ### Step 5: Calculate \( \sqrt{(Z^2 + y^2)} \) Now we find the square root: \[ \sqrt{(Z^2 + y^2)} = \sqrt{\frac{1}{4}} = \frac{1}{2} \] ### Step 6: Multiply \( w^2 \) and \( \sqrt{(Z^2 + y^2)} \) Finally, we multiply \( w^2 \) by \( \sqrt{(Z^2 + y^2)} \): \[ w^2 \sqrt{(Z^2 + y^2)} = 4 \cdot \frac{1}{2} = 2 \] ### Final Answer The value of the expression \( w^2 \sqrt{(Z^2 + y^2)} \) is \( 2 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Given w = -2, x = 3, y = 0 & z = -(1)/(2) . Find the value of 2x(w-z). A. -9 B. 9 C. 8 D. -8

Given w = - 2, x = 3, y = 0 & z = - (1)/(2) . Find the value of (z)/(w) + x . A. 3 (1)/(4) B. - 3 (1)/(4) C. 3.2 D. 3.5

Given,w = -2, x = 3,y = 0, and z = -frac(1)(2).Find the value of 2(w^2 + x^2 + y^2)

If [[x-y,z2x-y,w]]=[[-1,40,5]] Then find the value of x+y

The coefficients w, x,y,z in the reaction w Cr_(2)O_(7)^(2-) + xFe^(2+) to y Cr^(3+) + z Fe^(3+) + H_(2)O

If x^(2)+y^(2)+z^(2)=2(x-y-z)-3 Find the value of 2x-3y+4z