Home
Class 14
MATHS
Find the value: 1 + tan15^@tan75^@...

Find the value: `1 + tan15^@tan75^@`

A

`sec^2 15^@`

B

`sec^2 75^@`

C

2

D

`1+(1+sqrt3)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(1 + \tan 15^\circ \tan 75^\circ\), we can follow these steps: ### Step 1: Use the Identity for Tangent Recall that \(\tan(90^\circ - \theta) = \cot(\theta)\). Therefore, we can express \(\tan 75^\circ\) as: \[ \tan 75^\circ = \tan(90^\circ - 15^\circ) = \cot 15^\circ \] ### Step 2: Substitute in the Expression Now substitute \(\tan 75^\circ\) in the original expression: \[ 1 + \tan 15^\circ \tan 75^\circ = 1 + \tan 15^\circ \cot 15^\circ \] ### Step 3: Simplify Using Cotangent We know that \(\cot \theta = \frac{1}{\tan \theta}\). Thus, we can write: \[ \tan 15^\circ \cot 15^\circ = \tan 15^\circ \cdot \frac{1}{\tan 15^\circ} = 1 \] ### Step 4: Final Calculation Now substitute this back into the expression: \[ 1 + \tan 15^\circ \cot 15^\circ = 1 + 1 = 2 \] ### Conclusion The final value is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of : tan 15^0

Find the value of tan15^(@)

Find the value of tan15^@ .

Find the value of : tan75^(@)

Find the value of tan15^(@) .

Find the value of tan75^(@)

Find the value of tan75^(@) :

Find the value of tan 1^@ tan 2^@ tan 3^@ ….tan 45^@ …..tan 88^@ tan 89^@

Find the value of tan 75^(@) .