Home
Class 14
MATHS
If x- sqrtx=20, Find the value of sqrt x...

If `x- sqrtx`=`20`, Find the value of `sqrt x`
A. 5 B. 6. C. 8 D. 7

A

D

B

B

C

C

D

A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x - \sqrt{x} = 20 \) and find the value of \( \sqrt{x} \), we can follow these steps: ### Step 1: Substitute \( \sqrt{x} \) with a variable Let \( u = \sqrt{x} \). Then, we can express \( x \) in terms of \( u \): \[ x = u^2 \] Now, substituting this into the original equation gives: \[ u^2 - u = 20 \] ### Step 2: Rearrange the equation Rearranging the equation leads to: \[ u^2 - u - 20 = 0 \] ### Step 3: Factor the quadratic equation Next, we need to factor the quadratic equation \( u^2 - u - 20 = 0 \). We look for two numbers that multiply to \(-20\) and add to \(-1\). The numbers \(-5\) and \(4\) work: \[ (u - 5)(u + 4) = 0 \] ### Step 4: Solve for \( u \) Setting each factor to zero gives us the possible solutions: \[ u - 5 = 0 \quad \Rightarrow \quad u = 5 \] \[ u + 4 = 0 \quad \Rightarrow \quad u = -4 \] ### Step 5: Determine the valid solution Since \( u = \sqrt{x} \) and the square root cannot be negative, we discard \( u = -4 \). Thus, we have: \[ u = 5 \] ### Conclusion Therefore, the value of \( \sqrt{x} \) is: \[ \sqrt{x} = 5 \] ### Final Answer The correct option is **A. 5**.
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=8, Find the value of 3sqrt(x)+x-5

If x=3-sqrt8," then find the value of "1/sqrtx-sqrtx .

If x = 3 + 2 sqrt2 , find the value sqrtx - (1)/(sqrtx)

If x = 1 + sqrt2 , then find the value of sqrtx+(1/sqrtx) . यदि x = 1 + sqrt2 , है, तो sqrtx+(1/sqrtx) का मान ज्ञात कीजिए ?

find the value of x - 1/x if x = 7-4sqrt5