Home
Class 14
MATHS
(4x - 7)^(2) = ? A. 4x^(2) - 56x +4...

` (4x - 7)^(2) = ? `
A. `4x^(2) - 56x +49`
B. `4x^(2) - 14 x +49`
C. `16 x^(2) +14 x +49`
D. ` 16 x^(2) - 56x +49`

A

B

B

A

C

C

D

D

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((4x - 7)^{2}\), we will use the identity for the square of a binomial, which is given by: \[ (a - b)^{2} = a^{2} - 2ab + b^{2} \] In our case, we can identify \(a\) and \(b\) as follows: - \(a = 4x\) - \(b = 7\) Now, we will apply the identity step by step. ### Step 1: Calculate \(a^{2}\) \[ a^{2} = (4x)^{2} = 16x^{2} \] ### Step 2: Calculate \(-2ab\) \[ -2ab = -2 \cdot (4x) \cdot 7 = -56x \] ### Step 3: Calculate \(b^{2}\) \[ b^{2} = 7^{2} = 49 \] ### Step 4: Combine all the parts Now we combine all the calculated parts: \[ (4x - 7)^{2} = a^{2} - 2ab + b^{2} = 16x^{2} - 56x + 49 \] Thus, the expanded form of \((4x - 7)^{2}\) is: \[ 16x^{2} - 56x + 49 \] ### Final Answer The correct answer is option D: \(16x^{2} - 56x + 49\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 49 , then x^(2) + 2x + 1=? .

Factories: x ^(2) + 14x + 49

Factorise: 49 (2x + 3y) ^(2) - 70 ( 4x ^(2) - 9 y ^(2)) + 25 ( 2 x - 3y ) ^(2)

If x=49 , then x^(3) - 5x^(2) - 2x - 6=?

Find the sum of series 4 - 9x + 16 x^(2) - 25 x^(3) + 36 x^(4) - 49 x^(5) + ...oo

16a^(2)-56ab+49b^(2)= ________

Factorise 49x^(2) - 16y^(2) .

If P = ( x ^(2) - 36)/( x ^(2) - 49) and Q = ( x + 6)/(x - 7) , then find the vlaue of ( P )/( Q).