Home
Class 14
MATHS
Simplify sqrt((1 - sin^(2) theta) div (1...

Simplify `sqrt((1 - sin^(2) theta) div (1- cos^(2) theta))`

A

`Cot theta`

B

`Tan theta`

C

`Sec theta`

D

`"Cosec " theta`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\sqrt{\frac{1 - \sin^2 \theta}{1 - \cos^2 \theta}}\), we can follow these steps: ### Step 1: Identify the Trigonometric Identities We know from trigonometric identities that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] From this identity, we can express \(1 - \sin^2 \theta\) and \(1 - \cos^2 \theta\). ### Step 2: Rewrite the Numerator Using the identity, we can rewrite the numerator: \[ 1 - \sin^2 \theta = \cos^2 \theta \] ### Step 3: Rewrite the Denominator Similarly, we can rewrite the denominator: \[ 1 - \cos^2 \theta = \sin^2 \theta \] ### Step 4: Substitute Back into the Expression Now, substituting these identities back into the original expression gives us: \[ \sqrt{\frac{\cos^2 \theta}{\sin^2 \theta}} \] ### Step 5: Simplify the Fraction The fraction \(\frac{\cos^2 \theta}{\sin^2 \theta}\) can be simplified to: \[ \left(\frac{\cos \theta}{\sin \theta}\right)^2 \] ### Step 6: Take the Square Root Taking the square root of the simplified fraction results in: \[ \frac{\cos \theta}{\sin \theta} = \cot \theta \] ### Final Result Thus, the simplified form of the original expression is: \[ \sqrt{\frac{1 - \sin^2 \theta}{1 - \cos^2 \theta}} = \cot \theta \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify sqrt(1- sin^2theta ) + (1 cos^2theta)

Simplify (sin^(2)theta)/(1+cos theta)+(sin^(2)theta)/(1-cos theta)

Simplify cos^2theta-sin^2theta

sin ^ (4) theta + 2sin ^ (2) theta (1- (1) / (cos ec ^ (2) theta)) + cos ^ (4) theta =

tan theta= A) (sqrt(1-sin^(2)theta))/(sin theta) , B) (1)/(sec theta) , C) (sin theta)/(sqrt(1-sin^(2)theta)) D) (1)/(sqrt(1+Cot^(2)theta)

Evaluate int((2 sin theta + sin 2 theta)d theta)/((cos theta-1)sqrt(cos theta + cos^(2) theta + cos^(3) theta)) .

int(x)/(sqrt(1-x))dx=int(sin^(2)theta)/(sqrt(1-sin^(2)theta))*2sin theta cos theta d theta

What is the simplified value of [(cos^(2) theta)/(1+sin theta)- (sin^(2) theta)/(1 + cos theta)]^(2) ?

(sin ^ (4) theta + cos ^ (4) theta) / (1-2sin ^ (2) theta cos ^ (2) theta) = 1

Simplify [(sin theta)/(cos theta)+(cos theta)/(sin theta)]^(2)