Home
Class 14
MATHS
If (a^(2) - b^(2)) div (a + b) = 25, fin...

If `(a^(2) - b^(2)) div (a + b) = 25`, find `a-b`.
A. 15
B. 18
C. 25
D. 30

A

C

B

D

C

A

D

B

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{a^2 - b^2}{a + b} = 25 \) and find the value of \( a - b \), we can follow these steps: ### Step 1: Use the difference of squares identity We know from algebra that \( a^2 - b^2 \) can be factored as: \[ a^2 - b^2 = (a + b)(a - b) \] So we can rewrite the equation as: \[ \frac{(a + b)(a - b)}{a + b} = 25 \] ### Step 2: Simplify the equation Since \( a + b \) is in both the numerator and the denominator, we can cancel it out (assuming \( a + b \neq 0 \)): \[ a - b = 25 \] ### Step 3: Identify the value of \( a - b \) From the simplified equation, we find that: \[ a - b = 25 \] ### Conclusion Thus, the value of \( a - b \) is \( 25 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If (a^2 - b^2) + (a + b)=25 , find a - b

If a^(2)+b^(2)=25 and ab=12 find a^(2)-b^(2)

If x^(2)= 25^(2)- 15^(2) , then find the value of x. A. 40 B. 50 C. 20 D. 25

Find the LCM of 15, 25 and 29. A. 2335 B. 3337 C. 2175 D. 2375

If a : b =5 and b : c = 16 : 25," then find " a : b : c .

Find the value of (25 a ^(2) + 16 b ^(2) + 9 + 40 ab - 2 4b - 30 a) at a =- 1 and b =2.

If A: B = 5 : 8 and B : C = 18 : 25 find A : C

If signs - and xx , and numbers 5 and 14 are interchanged, then the value of 5 + 4 div 2 - 8 xx 14 is A. 15 B. 20 C. 25 D. 30