Home
Class 14
MATHS
If the value of theta = 30^(@) , then ...

If the value of ` theta = 30^(@)` , then value of ` tan^(2) theta + cot ^(2) theta `
A. 1/3
B. 4/3
C. 9/3
D. 10/3

A

D

B

B

C

C

D

A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^2 \theta + \cot^2 \theta \) when \( \theta = 30^\circ \). ### Step-by-Step Solution: 1. **Identify the values of \( \tan \theta \) and \( \cot \theta \)**: - We know that \( \tan 30^\circ = \frac{1}{\sqrt{3}} \). - The cotangent is the reciprocal of the tangent, so \( \cot 30^\circ = \sqrt{3} \). 2. **Calculate \( \tan^2 \theta \)**: \[ \tan^2 30^\circ = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] 3. **Calculate \( \cot^2 \theta \)**: \[ \cot^2 30^\circ = (\sqrt{3})^2 = 3 \] 4. **Add \( \tan^2 \theta \) and \( \cot^2 \theta \)**: \[ \tan^2 30^\circ + \cot^2 30^\circ = \frac{1}{3} + 3 \] 5. **Convert \( 3 \) into a fraction with a common denominator**: - Convert \( 3 \) to a fraction: \[ 3 = \frac{9}{3} \] 6. **Combine the fractions**: \[ \tan^2 30^\circ + \cot^2 30^\circ = \frac{1}{3} + \frac{9}{3} = \frac{10}{3} \] 7. **Final Result**: The value of \( \tan^2 \theta + \cot^2 \theta \) is \( \frac{10}{3} \). ### Conclusion: Thus, the correct answer is option D: \( \frac{10}{3} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Write the value of 3 cot^(2)theta - 3 "cosec"^(2)theta.

If tan theta-cot theta=7, then the value of tan^(3)theta-cot^(3)theta is

If tan theta - cot theta =7 , then the value of tan^(3)theta-cot^(3)theta is

If tan theta+4cot theta=4, the value of tan^(3)theta+cot^(3)theta is :

If cot theta=1, then find the value of : 5tan^(2)theta+2sin^(2)theta-3

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If 3cot theta=2, then find the value of tan theta .