Home
Class 14
MATHS
If x^(2)-4x+1=0, then what is the value ...

If `x^(2)-4x+1=0`, then what is the value of `(x^(6)+x^(-6))` ?

A

2786

B

2702

C

2716

D

2744

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - 4x + 1 = 0 \) and find the value of \( x^6 + x^{-6} \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the quadratic equation: \[ x^2 - 4x + 1 = 0 \] We can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1 \), \( b = -4 \), and \( c = 1 \). Calculating the discriminant: \[ b^2 - 4ac = (-4)^2 - 4 \cdot 1 \cdot 1 = 16 - 4 = 12 \] Now substituting back into the quadratic formula: \[ x = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3} \] ### Step 2: Find \( x + x^{-1} \) Next, we can find \( x + x^{-1} \). We know: \[ x + \frac{1}{x} = \frac{x^2 + 1}{x} \] From the original equation, we can divide by \( x \) (assuming \( x \neq 0 \)): \[ x - 4 + \frac{1}{x} = 0 \implies x + \frac{1}{x} = 4 \] ### Step 3: Find \( x^2 + x^{-2} \) Using the identity: \[ (x + x^{-1})^2 = x^2 + 2 + x^{-2} \] We can rearrange it to find \( x^2 + x^{-2} \): \[ x^2 + x^{-2} = (x + x^{-1})^2 - 2 = 4^2 - 2 = 16 - 2 = 14 \] ### Step 4: Find \( x^4 + x^{-4} \) Now, we can find \( x^4 + x^{-4} \) using: \[ (x^2 + x^{-2})^2 = x^4 + 2 + x^{-4} \] Rearranging gives: \[ x^4 + x^{-4} = (x^2 + x^{-2})^2 - 2 = 14^2 - 2 = 196 - 2 = 194 \] ### Step 5: Find \( x^6 + x^{-6} \) Finally, we can find \( x^6 + x^{-6} \) using: \[ x^6 + x^{-6} = (x^4 + x^{-4})(x^2 + x^{-2}) - (x^2 + x^{-2}) \] Substituting the values we found: \[ x^6 + x^{-6} = 194 \cdot 14 - 14 \] Calculating: \[ 194 \cdot 14 = 2716 \] So: \[ x^6 + x^{-6} = 2716 - 14 = 2702 \] ### Final Answer Thus, the value of \( x^6 + x^{-6} \) is: \[ \boxed{2702} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x-(1)/(x)=5,xne0 then what is the value of (x^(6)+3x^(3)-1)/(x^(6)-8x^(3)-1) ?

If x^2+3x+1=0 , then what is the value of x^6+1/x^6 ? यदि x^2+3x+1=0 है, तो x^6+1/x^6 का मान क्या होगा ?