Home
Class 14
MATHS
The value of (5-2div4xx[5-(3-4)]+5xx4div...

The value of `(5-2div4xx[5-(3-4)]+5xx4div2" of "4)/(4+4div8" of "2xx(8-5)xx2div3-8div2" of "8)` is

A

`{:(9)/(8):}`

B

`{:(9)/(4):}`

C

`{:(15)/(32):}`

D

`{:(89)/(4):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{5 - 2 \div 4 \text{ of } [5 - (3 - 4)] + 5 \times 4 \div 2 \text{ of } 4}{4 + 4 \div 8 \text{ of } 2 \times (8 - 5) \times 2 \div 3 - 8 \div 2 \text{ of } 8} \), we will follow the order of operations (BODMAS/BIDMAS). ### Step 1: Solve the innermost brackets First, we simplify the expression inside the brackets: - For the numerator: - \( 3 - 4 = -1 \) - So, \( 5 - (-1) = 5 + 1 = 6 \) - For the denominator: - \( 8 - 5 = 3 \) Now, we can rewrite the expression as: \[ \frac{5 - 2 \div 4 \text{ of } 6 + 5 \times 4 \div 2 \text{ of } 4}{4 + 4 \div 8 \text{ of } 2 \times 3 \times 2 \div 3 - 8 \div 2 \text{ of } 8} \] ### Step 2: Solve the 'of' operations Next, we handle the 'of' operations (which means multiplication): - In the numerator: - \( 2 \text{ of } 4 = 2 \times 4 = 8 \) - \( 5 \text{ of } 4 = 5 \times 4 = 20 \) So, the numerator becomes: \[ 5 - 2 \div 8 + 20 \div 2 \] - In the denominator: - \( 4 \text{ of } 8 = 4 \times 8 = 32 \) - \( 4 \text{ of } 2 = 4 \times 2 = 8 \) Now, the denominator becomes: \[ 4 + 4 \div 32 \times 3 \times 2 \div 3 - 8 \div 16 \] ### Step 3: Solve the divisions Now we perform the divisions: - In the numerator: - \( 2 \div 8 = \frac{1}{4} \) - \( 20 \div 2 = 10 \) So, the numerator is: \[ 5 - \frac{1}{4} + 10 = 15 - \frac{1}{4} = \frac{60 - 1}{4} = \frac{59}{4} \] - In the denominator: - \( 4 \div 32 = \frac{1}{8} \) - \( 8 \div 16 = \frac{1}{2} \) So, the denominator becomes: \[ 4 + \frac{1}{8} \times 3 \times 2 \div 3 - \frac{1}{2} \] Since \( \frac{1}{8} \times 3 \times 2 \div 3 = \frac{1}{8} \times 2 = \frac{1}{4} \), the denominator is: \[ 4 + \frac{1}{4} - \frac{1}{2} = 4 + \frac{1}{4} - \frac{2}{4} = 4 - \frac{1}{4} = \frac{16 - 1}{4} = \frac{15}{4} \] ### Step 4: Final division Now we have: \[ \frac{\frac{59}{4}}{\frac{15}{4}} = \frac{59}{15} \] ### Final Answer Thus, the value of the expression is: \[ \frac{59}{15} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 9xx[(9-4)div{(8div" of "4)+(4div4 " of "2)}] is :

The value of 7div[5+1div2-{4+("4 of "2div4)+(5 div5" of "2)}] is

The value of (4-3 div 2 xx (4-2)-3 + 4 xx 3 div 2 + 4)/(4 + 3 div 4 xx (2-4) xx 4 + 3 div 4 of 3) is .............

The value of (8 div [(8-3) div {(4 div 4 of 8)+ 4-4xx4 div 8}-2])/(8xx8 div 4-8 div 8 of 2-7) is:- (8 div [(8-3) div {(4 div 4 of 8)+ 4-4xx4 div 8}-2])/(8xx8 div 4-8 div 8 of 2-7) का मान है :

The value of 8 div [ ( 9-5) div { ( 4 div 2 " of "4 ) - ( 8 div 8 " of " 15 ) + ( 4 xx 2 div 8 ) } ] is :

The value of (7+8xx8 div 8 of 8+8 div 8xx4 of 4)/(4 div 4 of 4+4xx4 div 4-4 div 4 of 2) is :- (7+8xx8 div 8 of 8+8 div 8xx4 of 4)/(4 div 4 of 4+4xx4 div 4-4 div 4 of 2) का मान है :

The value of 2/3div(4/5-1/2)xx18/25-(4/5div5/6" of 2"2/3)+3 1/5div8/5 xx 2/5 is :

The value of 2xx3 div 2 of 3 xx2 div (4 + 4xx 4 div 4 of 4-4 div 4xx4 ) is: 2xx3 div 2 of 3 xx2 div (4 + 4xx 4 div 4 of 4-4 div 4xx4 ) का मान ज्ञात करें |