Home
Class 14
MATHS
If x^(4)+x^(2)y^(2)+y^(4)=133 and x^(2)-...

If `x^(4)+x^(2)y^(2)+y^(4)=133` and `x^(2)-xy+y^(2)=7,` then what is the value of xy ?

A

8

B

12

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the two given equations: 1. \( x^4 + x^2y^2 + y^4 = 133 \) 2. \( x^2 - xy + y^2 = 7 \) We need to find the value of \( xy \). ### Step 1: Rewrite the first equation We can use the identity: \[ x^4 + y^4 + x^2y^2 = (x^2 + y^2)^2 - x^2y^2 \] This means we can express \( x^4 + x^2y^2 + y^4 \) in terms of \( x^2 + y^2 \) and \( xy \). ### Step 2: Express \( x^2 + y^2 \) From the second equation \( x^2 - xy + y^2 = 7 \), we can express \( x^2 + y^2 \) as: \[ x^2 + y^2 = 7 + xy \] ### Step 3: Substitute into the first equation Now substitute \( x^2 + y^2 \) into the rewritten first equation: \[ (x^2 + y^2)^2 - x^2y^2 = 133 \] Substituting \( x^2 + y^2 = 7 + xy \): \[ (7 + xy)^2 - x^2y^2 = 133 \] ### Step 4: Expand and simplify Expanding \( (7 + xy)^2 \): \[ 49 + 14xy + (xy)^2 - x^2y^2 = 133 \] We know that \( x^2y^2 = (xy)^2 \), so we can rewrite it as: \[ 49 + 14xy + (xy)^2 - (xy)^2 = 133 \] This simplifies to: \[ 49 + 14xy = 133 \] ### Step 5: Solve for \( xy \) Now, isolate \( xy \): \[ 14xy = 133 - 49 \] \[ 14xy = 84 \] \[ xy = \frac{84}{14} = 6 \] Thus, the value of \( xy \) is \( 6 \). ### Final Answer The value of \( xy \) is \( 6 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(4) +x^(2)y^(2)+y^(4)=21 , and x^(2)+xy+y^(2)=3 then what is the value of 4xy?

If x^(4) + x^(2) y^(2) + y^(4) = 91 and x^(2) - xy + y^(2) = 13 , then what is the value of | x-y|?

If 2x^(2)-7xy+3y^(2)=0, then find the value of x:y.

If 5x^(2) -4xy +y^(2) -2x +1=0 then value of x+y is

If x^4+x^2y^2+y^4=21 and x^2+xy+y^2= 7 , then the value of (1/x^2+1/y^2) is : यदि x^4+x^2y^2+y^4=21 तथा x^2+xy+y^2= 7 है, तो (1/x^2+1/y^2) का मान होगा :

If 9+2(3x-xy+x^(2))+y^(2)=0 ,then what is the value of (3x^(2)-2xy+5y^(2)) ?