Home
Class 14
MATHS
The value of tan^(2)48^(@)-cosec^(2)42^(...

The value of `tan^(2)48^(@)-cosec^(2)42^(@)+cosec(67^(@)+theta)-sec(23^(@)-theta)` is :

A

`-1`

B

`0`

C

`1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^2 48^\circ - \csc^2 42^\circ + \csc(67^\circ + \theta) - \sec(23^\circ - \theta) \), we will break it down step by step. ### Step 1: Rewrite the expression using trigonometric identities We start with the expression: \[ \tan^2 48^\circ - \csc^2 42^\circ + \csc(67^\circ + \theta) - \sec(23^\circ - \theta) \] ### Step 2: Apply the complementary angle identity Using the complementary angle identity, we know: \[ \tan(90^\circ - x) = \cot x \quad \text{and} \quad \csc(90^\circ - x) = \sec x \] Thus, we can rewrite \( \tan^2 48^\circ \) as: \[ \tan^2 48^\circ = \cot^2 (90^\circ - 48^\circ) = \cot^2 42^\circ \] ### Step 3: Substitute and simplify Now substituting \( \tan^2 48^\circ \) in the expression: \[ \cot^2 42^\circ - \csc^2 42^\circ + \csc(67^\circ + \theta) - \sec(23^\circ - \theta) \] We know that: \[ \cot^2 x - \csc^2 x = -1 \] So, substituting this into our expression gives: \[ -1 + \csc(67^\circ + \theta) - \sec(23^\circ - \theta) \] ### Step 4: Simplify the remaining terms Next, we analyze \( \csc(67^\circ + \theta) \) and \( \sec(23^\circ - \theta) \): Using the identity \( \sec(90^\circ - x) = \csc x \): \[ \sec(23^\circ - \theta) = \csc(90^\circ - (23^\circ - \theta)) = \csc(67^\circ + \theta) \] Thus, we have: \[ \csc(67^\circ + \theta) - \sec(23^\circ - \theta) = \csc(67^\circ + \theta) - \csc(67^\circ + \theta) = 0 \] ### Step 5: Combine the results Putting it all together, we have: \[ -1 + 0 = -1 \] ### Final Answer The value of the expression is: \[ \boxed{-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sec^(2)theta=3, 0^(@)ltthetalt(pi)/(2) , then the value of (tan^(2)theta-cosec^(2)theta)/(tan^(2)theta+cosec^(2)theta) is

Write the value of (tan^(2)theta-sec^(2)theta)/(cot^(2)theta-"cosec"^(2)theta).

If tantheta=sqrt((1)/(13))and theta is acute , then what is the value of ((cosec^(2)theta-sec^(2)theta))/(cosec^(2)theta+sec^(2)theta)) ?

The value of 2 sec^(2) theta - sec^(4) theta - 2 cosec^(2)theta + cosec^(4) theta is

Given tantheta=1/sqrt3 , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

Find the value of sin 48^(@) sec 42^(@)+cos48^(@) "cosec"42^(@).

What is the value of ( cosec (78^(@) - theta) - sec ( 12^(@) + theta) - tan (67^(@) + theta) + cot (23^(@) - theta) )/( tan 13^(@) tan 37^(@) tan 45^(@) tan 53^(@) tan 77^(@) ) ?

What is the value of cosec(65^@+theta) -sec(25^@-theta)+tan^2 20^@- cosec^2 70^@ ? cosec(65^@+theta) -sec(25^@-theta)+tan^2 20^@- cosec^2 70^@ का मान क्या है ?

If tan theta =(1)/(sqrt(5)), " write the value of " (("cosec"^(2)theta-sec^(2)theta))/(("cosec"^(2)theta+sec^(2)theta)).