Home
Class 14
MATHS
The value of sqrt(9-2sqrt(11-6sqrt(2))) ...

The value of `sqrt(9-2sqrt(11-6sqrt(2)))` is closest to :

A

`2.7`

B

`2.9`

C

`2.4`

D

`2.1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{9 - 2\sqrt{11 - 6\sqrt{2}}} \), we will break it down step by step. ### Step 1: Simplify the inner square root We start with the expression inside the square root: \[ 11 - 6\sqrt{2} \] We can try to express \( 11 - 6\sqrt{2} \) in the form of \( (a - b\sqrt{c})^2 \). ### Step 2: Identify \( a \) and \( b \) Let’s assume: \[ 11 - 6\sqrt{2} = (a - b\sqrt{2})^2 \] Expanding the right side, we get: \[ a^2 + 2ab\sqrt{2} + 2b^2 \] This means: - \( a^2 + 2b^2 = 11 \) (1) - \( 2ab = -6 \) (2) From equation (2), we can express \( ab \): \[ ab = -3 \] Thus, \( b = -\frac{3}{a} \). ### Step 3: Substitute \( b \) in equation (1) Substituting \( b \) in equation (1): \[ a^2 + 2\left(-\frac{3}{a}\right)^2 = 11 \] \[ a^2 + 2\left(\frac{9}{a^2}\right) = 11 \] Multiplying through by \( a^2 \) to eliminate the fraction: \[ a^4 - 11a^2 + 18 = 0 \] ### Step 4: Let \( x = a^2 \) Let \( x = a^2 \): \[ x^2 - 11x + 18 = 0 \] Factoring this quadratic: \[ (x - 2)(x - 9) = 0 \] Thus, \( x = 2 \) or \( x = 9 \). ### Step 5: Find \( a \) and \( b \) If \( x = 2 \): \[ a^2 = 2 \Rightarrow a = \sqrt{2} \] Then from \( ab = -3 \): \[ b = -\frac{3}{\sqrt{2}} \] If \( x = 9 \): \[ a^2 = 9 \Rightarrow a = 3 \] Then from \( ab = -3 \): \[ b = -1 \] ### Step 6: Choose the correct values We can use \( a = 3 \) and \( b = -1 \) because it gives us: \[ 11 - 6\sqrt{2} = (3 - \sqrt{2})^2 \] ### Step 7: Substitute back into the original expression Now substituting back: \[ \sqrt{9 - 2\sqrt{11 - 6\sqrt{2}}} = \sqrt{9 - 2(3 - \sqrt{2})} \] \[ = \sqrt{9 - 6 + 2\sqrt{2}} \] \[ = \sqrt{3 + 2\sqrt{2}} \] ### Step 8: Simplify \( \sqrt{3 + 2\sqrt{2}} \) We can express \( 3 + 2\sqrt{2} \) as \( (a + b\sqrt{2})^2 \): Let’s assume: \[ 3 + 2\sqrt{2} = (a + b\sqrt{2})^2 \] Expanding gives: \[ a^2 + 2b^2 + 2ab\sqrt{2} \] This means: - \( a^2 + 2b^2 = 3 \) (3) - \( 2ab = 2 \) (4) From equation (4): \[ ab = 1 \Rightarrow b = \frac{1}{a} \] ### Step 9: Substitute \( b \) in equation (3) Substituting \( b \) in equation (3): \[ a^2 + 2\left(\frac{1}{a}\right)^2 = 3 \] Multiplying through by \( a^2 \): \[ a^4 - 3a^2 + 2 = 0 \] Let \( y = a^2 \): \[ y^2 - 3y + 2 = 0 \] Factoring gives: \[ (y - 1)(y - 2) = 0 \] Thus, \( y = 1 \) or \( y = 2 \). ### Step 10: Find \( a \) and \( b \) If \( y = 1 \): \[ a^2 = 1 \Rightarrow a = 1 \] Then \( b = 1 \). If \( y = 2 \): \[ a^2 = 2 \Rightarrow a = \sqrt{2} \] Then \( b = \frac{1}{\sqrt{2}} \). ### Final Step: Evaluate the expression Using \( a = 1 \) and \( b = 1 \): \[ \sqrt{3 + 2\sqrt{2}} = 1 + \sqrt{2} \] Since \( \sqrt{2} \approx 1.414 \): \[ 1 + \sqrt{2} \approx 1 + 1.414 = 2.414 \] Thus, the value of \( \sqrt{9 - 2\sqrt{11 - 6\sqrt{2}}} \) is closest to **2.4**.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sqrt( 6 - sqrt( 38-2sqrt(72))) is closest to :

The value of (1)/(sqrt(17 + 12 sqrt(2))) is closest to .........

(sqrt(11)+sqrt(2))/(9)=

The value of (1)/(sqrt(7-4sqrt(3))) is closest to

The value of sqrt(11+2sqrt(18)) is closest to :

6.The value of (sqrt(5)+sqrt(2))(sqrt(5)-sqrt(2)) is: