Home
Class 14
MATHS
Two chords AB and CD of a circle interse...

Two chords AB and CD of a circle intersect each other at P internally. If AP = 3.5 cm, PC = 5 cm, and DP = 7 cm, then what is the measure of PB?

A

8 cm

B

12 cm

C

10 cm

D

10.5 cm

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we can use the property of intersecting chords in a circle. The property states that if two chords intersect each other inside a circle, then the products of the lengths of the segments of each chord are equal. ### Step-by-Step Solution: 1. **Identify the Given Values:** - Let \( AP = 3.5 \, \text{cm} \) - Let \( PC = 5 \, \text{cm} \) - Let \( DP = 7 \, \text{cm} \) - We need to find \( PB \). 2. **Apply the Intersecting Chords Theorem:** According to the theorem: \[ AP \times PB = PC \times PD \] 3. **Substitute the Known Values:** Substitute the known lengths into the equation: \[ 3.5 \times PB = 5 \times 7 \] 4. **Calculate the Right Side:** Calculate \( 5 \times 7 \): \[ 5 \times 7 = 35 \] So the equation becomes: \[ 3.5 \times PB = 35 \] 5. **Solve for \( PB \):** To find \( PB \), divide both sides by \( 3.5 \): \[ PB = \frac{35}{3.5} \] 6. **Simplify the Division:** To simplify \( \frac{35}{3.5} \), we can multiply the numerator and denominator by 10 to eliminate the decimal: \[ PB = \frac{35 \times 10}{3.5 \times 10} = \frac{350}{35} = 10 \] 7. **Final Answer:** Thus, the length of \( PB \) is: \[ PB = 10 \, \text{cm} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Chords AB and CD of a circle intersect at a point P inside the circle. If AB = 10 cm, AP = 4 cm and PC = 5 cm, then CD is equal to:

Two chords AB and CD of a circle intersect at a point P inside the circle. If AB = 7cm , PC = 2 cm and AP = 4 cm, then CD is equal to: एक वृत्त की दो जीवाएं AB और CD वृत्त के भीतर बिंदु P पर एक दूसरे को काटती हैं | यदि AB = 7 सेमी, PC = 2 सेमी और AP = 4 सेमी है, तो CD किसके बराबर होगा ?

In the given figure, O is the centre of the circle. Its two chords AB and CD intersect each other at the point P within the circle. If AB = 18 cm, PB = 8 cm, CP = 5 cm, then find the length of CD.

Chords AB and CD of a circle intersect at a point P inside the circle. If AB = 10 cm. AP = 4 cm and PC = 5 cm, then CD is equal to: एक वृत्त की जीवायें AB और CD वृत्त के भीतर स्थित बिंदु P पर एक दूसरे को काटती हैं | यदि AB =10 सेमी,AP = 4 सेमी और PC = 5 सेमी है, तो CD का मान क्या होगा ?

Chords AB and CD of a circle intersect externally at P. If AB = 6 cm, CD = 3 cm and PB = 4 cm, then the length (in cm) of PD is : एक वृत्त की जीवायें AB और CD एक दूसरे को बाहर से P पर काटती हैं | यदि AB = 6 सेमी,CD =3 सेमी और PB =4 सेमी है, तो PD की लंबाई (सेमी में ) ज्ञात करें |

The two chords AB and CD of a circle intersect at point P, such that BP=4 cm, PD=5 cm, and CP=8 cm. find the length of chord AB.