Home
Class 14
MATHS
If a +b + c = 19, ab + bc + ca = 120 the...

If a +b + c = 19, ab + bc + ca = 120 then what is the value of `a^3 + b^3 + c^3 - 3abc?`

A

18

B

23

C

31

D

19

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 - 3abc \) given the equations \( a + b + c = 19 \) and \( ab + bc + ca = 120 \). ### Step-by-step Solution: 1. **Recall the formula**: The formula we will use is: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c) \left( (a + b + c)^2 - 3(ab + ac + bc) \right) \] 2. **Substitute the known values**: From the problem, we know: - \( a + b + c = 19 \) - \( ab + ac + bc = 120 \) Plugging these values into the formula: \[ a^3 + b^3 + c^3 - 3abc = 19 \left( 19^2 - 3 \times 120 \right) \] 3. **Calculate \( 19^2 \)**: \[ 19^2 = 361 \] 4. **Calculate \( 3 \times 120 \)**: \[ 3 \times 120 = 360 \] 5. **Substitute back into the equation**: Now substitute these values back into the equation: \[ a^3 + b^3 + c^3 - 3abc = 19 \left( 361 - 360 \right) \] 6. **Simplify the expression**: \[ 361 - 360 = 1 \] Therefore, \[ a^3 + b^3 + c^3 - 3abc = 19 \times 1 = 19 \] ### Final Answer: Thus, the value of \( a^3 + b^3 + c^3 - 3abc \) is \( 19 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a + b + c = 9 and ab + bc + ca = 18, then the value of a^(3)+b^(3)+c^(3) + 3abc is :

If a+b+c = 11, ab+bc+ca = 3 and abc = -135, then what is the value of a^3+b^3+c^3 ? यदि a+b+c = 11, ab+bc+ca = 3 तथा abc = -135 है, तो a^3+b^3+c^3 का मान क्या होगा ?

If a ^(3) + b ^(3) + c ^(3) - 3abc = 250 and a + b + c = 10, then what is the value of ab + bc + ca ?

If a + b + c = 1, ab + bc + ca = 2 and abc = 3, then the value of a^4 +b^4 +c^4 is equal to _____