Home
Class 14
MATHS
If cos^2 theta- sin^2 theta = tan^2 phi ...

If `cos^2 theta- sin^2 theta = tan^2 phi` then which of the following is true ?

A

`cos theta cos phi = 1`

B

`cos^2 phi - sin^2 phi = tan^2 theta`

C

`cos^2 phi - sin^2 phi = cot^2 theta`

D

`cos theta cos phi = sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^2 \theta - \sin^2 \theta = \tan^2 \phi \) and determine which of the given options is true, we can follow these steps: ### Step 1: Rewrite the given equation The equation provided is: \[ \cos^2 \theta - \sin^2 \theta = \tan^2 \phi \] ### Step 2: Use the identity for tangent Recall that: \[ \tan^2 \phi = \frac{\sin^2 \phi}{\cos^2 \phi} \] Thus, we can rewrite the equation as: \[ \cos^2 \theta - \sin^2 \theta = \frac{\sin^2 \phi}{\cos^2 \phi} \] ### Step 3: Express \(\cos^2 \theta\) in terms of \(\sin^2 \phi\) We can rearrange the equation: \[ \cos^2 \theta = \sin^2 \phi + \sin^2 \theta \] Using the identity \(\sin^2 \theta = 1 - \cos^2 \theta\), we can substitute: \[ \cos^2 \theta = \sin^2 \phi + (1 - \cos^2 \theta) \] This simplifies to: \[ 2 \cos^2 \theta = \sin^2 \phi + 1 \] Thus, \[ \cos^2 \theta = \frac{\sin^2 \phi + 1}{2} \] ### Step 4: Use the Pythagorean identity Using the identity \( \sin^2 \phi + \cos^2 \phi = 1 \), we can express \(\sin^2 \phi\) in terms of \(\cos^2 \phi\): \[ \sin^2 \phi = 1 - \cos^2 \phi \] Substituting this into our equation gives: \[ \cos^2 \theta = \frac{(1 - \cos^2 \phi) + 1}{2} \] This simplifies to: \[ \cos^2 \theta = \frac{2 - \cos^2 \phi}{2} \] ### Step 5: Analyze the options Now we can analyze the options given in the question. We need to check which of the following statements is true based on our derived equations. 1. \( \cos \theta \cdot \cos \phi = 1 \) 2. \( \cos^2 \phi - \sin^2 \phi = \tan^2 \theta \) 3. \( \cos^2 \phi - \sin^2 \phi = \cot^2 \theta \) 4. \( \cos \theta \cdot \cos \phi = \sqrt{2} \) ### Conclusion From the derived equations, we can check which statement holds true. After evaluating the options, we find that: - The correct option is \( \cos^2 \phi - \sin^2 \phi = \tan^2 \theta \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a sin^(2)theta+b cos^(2)theta=m,b sin^(2)phi+a cos^(2)phi=n,a tan theta=b tan phi, then which of the following is true?

sin theta and cos theta are roots of ax^(2)+bx+c=0 then which of the following are true ?(tan theta!=1)

If : cos^(2)theta-sin^(2)theta=tan^(2)phi, "then" : cos^(2)phi-sin^(2)phi=

If 2 - cos^(2) theta = 3 sin theta cos theta , sin theta ne cos theta then tan theta is

If cos theta+cos phi=a and sin theta - sin phi=b , then: 2cos(theta + phi) =

If tan^(2)theta=2tan^(2)phi+1, then cos2 theta+sin^(2)phi is equal to

If sin theta=5sin(theta+phi) then tan(theta+phi)=

If tan^(2)theta=1+2tan^(2)phi then show that cos2 theta+sin^(2)phi=0