Home
Class 14
MATHS
if (cos theta)/(1-sin theta)+ (cos theta...

if `(cos theta)/(1-sin theta)+ (cos theta)/(1 + sin theta) = 4 , 0^@ lt theta lt 90^@` then what is the value of `(sec theta + cosec theta + cot theta)?`

A

`1 + 2 sqrt(3)`

B

`(1+2 sqrt(3))/(3)`

C

`(2 + sqrt(3))/(3)`

D

`2 + sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\cos \theta}{1 - \sin \theta} + \frac{\cos \theta}{1 + \sin \theta} = 4 \] we will start by simplifying the left-hand side. ### Step 1: Combine the fractions The left-hand side can be combined into a single fraction: \[ \frac{\cos \theta (1 + \sin \theta) + \cos \theta (1 - \sin \theta)}{(1 - \sin \theta)(1 + \sin \theta)} \] ### Step 2: Simplify the numerator Now, simplify the numerator: \[ \cos \theta (1 + \sin \theta) + \cos \theta (1 - \sin \theta) = \cos \theta + \cos \theta \sin \theta + \cos \theta - \cos \theta \sin \theta = 2 \cos \theta \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ (1 - \sin \theta)(1 + \sin \theta) = 1 - \sin^2 \theta = \cos^2 \theta \] ### Step 4: Rewrite the equation Now we can rewrite the equation: \[ \frac{2 \cos \theta}{\cos^2 \theta} = 4 \] ### Step 5: Simplify the equation This simplifies to: \[ \frac{2}{\cos \theta} = 4 \] ### Step 6: Solve for cos theta Now, we can solve for \(\cos \theta\): \[ 2 = 4 \cos \theta \implies \cos \theta = \frac{1}{2} \] ### Step 7: Find theta Since \(0^\circ < \theta < 90^\circ\), we find: \[ \theta = 60^\circ \] ### Step 8: Calculate sec theta, cosec theta, and cot theta Now we need to find the value of: \[ \sec \theta + \csc \theta + \cot \theta \] Calculating each term: - \(\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{1}{2}} = 2\) - \(\csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}\) - \(\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}\) ### Step 9: Combine the results Now, we combine these results: \[ \sec \theta + \csc \theta + \cot \theta = 2 + \frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}} = 2 + \frac{3}{\sqrt{3}} = 2 + \sqrt{3} \] ### Final Answer Thus, the value of \(\sec \theta + \csc \theta + \cot \theta\) is: \[ \boxed{2 + \sqrt{3}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

IF (sin theta)/(cos theta)+(cos theta)/(sin theta)=2 with 0 lt theta lt 90^@ then what is theta equal to

If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then the value of 2sin theta + cos theta is:

If (cos theta +sin theta) : ( cos theta - sin theta) = (sqrt(3) +1): (sqrt(3)-1), 0^(@) lt theta lt 90^(@) , then what is the value of sec theta ?