Home
Class 14
MATHS
Solve the following: (a + b + c)(ab + bc...

Solve the following: (a + b + c)(ab + bc + ca) - abc = ?

A

(a + b)(b + c)(c - a)

B

(a + b)(b - c)(c + a)

C

(a + b)(b + c)(c + a)

D

(a - b)(b - c)(c - a)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((a + b + c)(ab + bc + ca) - abc\), we will follow these steps: ### Step 1: Expand the expression We start by expanding the product \((a + b + c)(ab + bc + ca)\). \[ (a + b + c)(ab + bc + ca) = a(ab + bc + ca) + b(ab + bc + ca) + c(ab + bc + ca) \] ### Step 2: Distribute each term Now, we distribute each term: 1. \(a(ab + bc + ca) = a^2b + abc + aca\) 2. \(b(ab + bc + ca) = ab^2 + b^2c + abc\) 3. \(c(ab + bc + ca) = abc + bca + c^2a\) Combining these, we have: \[ a^2b + abc + a^2c + ab^2 + b^2c + abc + abc + c^2a \] ### Step 3: Combine like terms Next, we combine like terms. Notice that \(abc\) appears three times: \[ a^2b + ab^2 + a^2c + b^2c + c^2a + 3abc \] ### Step 4: Subtract \(abc\) Now we subtract \(abc\) from the expression: \[ (a^2b + ab^2 + a^2c + b^2c + c^2a + 3abc) - abc = a^2b + ab^2 + a^2c + b^2c + c^2a + 2abc \] ### Step 5: Factor the expression We can factor the expression further. Notice that we can group terms: \[ = ab(a + b) + ac(a + c) + bc(b + c) + 2abc \] ### Step 6: Final expression The final expression can be simplified to: \[ = (a + b)(b + c)(c + a) \] Thus, the final answer is: \[ \boxed{(a + b)(b + c)(c + a)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a) .

Using properties of determinants, show the following: |[(b+c)^2,ab, ca],[ab,(a+c)^2,bc ],[ac ,bc,(a+b)^2]|=2abc(a+b+c)^3

Prove that (a+b+c)(ab+bc+ca)>9abc

Find the value of a^3 + b^3 + c^3 - 3abc if a + b + c = 12 and ab + bc + ca = 47 .

If a + b + c = 7 and a^3+b^3+c^3-3abc =175 , then what is the value of (ab + bc + ca) ? यदि a + b + c = 7 और a^3+b^3+c^3-3abc =175 , तो (ab + bc + ca) का मान क्या होगा?