Home
Class 14
MATHS
The value ok ((1(1)/(9) xx 1 (1)/(20) di...

The value ok `((1(1)/(9) xx 1 (1)/(20) div (21)/(38)-(1)/(3))div(2 (4)/(9)div 1(7)/(15) of ""(3)/(5)))/((1)/(5) of (1)/(5) div (1)/(125) - (1)/(125) div (1)/(5) of"" (1)/(5))` lies between......

A

0.1 and 0.15

B

0.2 and 0.25

C

0.15 and 0.2

D

0.25 and 0.3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression step by step, we will follow the order of operations (BODMAS/BIDMAS rules). ### Step 1: Simplify the expression The expression is: \[ \frac{\left(\frac{1 \frac{1}{9} \times 1 \frac{1}{20}}{\frac{21}{38} - \frac{1}{3}}\right) \div \left(2 \frac{4}{9} \div 1 \frac{7}{15} \text{ of } \frac{3}{5}\right)}{\left(\frac{1}{5} \text{ of } \frac{1}{5} \div \frac{1}{125} - \frac{1}{125} \div \left(\frac{1}{5} \text{ of } \frac{1}{5}\right)\right)} \] ### Step 2: Convert mixed numbers to improper fractions Convert the mixed numbers: - \(1 \frac{1}{9} = \frac{10}{9}\) - \(1 \frac{1}{20} = \frac{21}{20}\) - \(2 \frac{4}{9} = \frac{22}{9}\) - \(1 \frac{7}{15} = \frac{22}{15}\) Now, the expression becomes: \[ \frac{\left(\frac{\frac{10}{9} \times \frac{21}{20}}{\frac{21}{38} - \frac{1}{3}}\right) \div \left(\frac{22}{9} \div \frac{22}{15} \text{ of } \frac{3}{5}\right)}{\left(\frac{1}{25} \div \frac{1}{125} - \frac{1}{125} \div \frac{1}{25}\right)} \] ### Step 3: Simplify the numerator Calculate the numerator: 1. Calculate \(\frac{21}{38} - \frac{1}{3}\): - Find a common denominator (114): \[ \frac{21 \times 3}{114} - \frac{1 \times 38}{114} = \frac{63 - 38}{114} = \frac{25}{114} \] 2. Now calculate \(\frac{10}{9} \times \frac{21}{20}\): \[ \frac{10 \times 21}{9 \times 20} = \frac{210}{180} = \frac{7}{6} \] 3. Now divide by \(\frac{25}{114}\): \[ \frac{7}{6} \div \frac{25}{114} = \frac{7}{6} \times \frac{114}{25} = \frac{798}{150} = \frac{133}{25} \] 4. Now simplify \( \frac{22}{9} \div \frac{22}{15} \text{ of } \frac{3}{5}\): \[ \frac{22}{9} \div \frac{22}{15} = \frac{15}{9} = \frac{5}{3} \] \[ \frac{5}{3} \text{ of } \frac{3}{5} = 1 \] Thus, the numerator simplifies to: \[ \frac{133}{25} \div 1 = \frac{133}{25} \] ### Step 4: Simplify the denominator Calculate the denominator: 1. Calculate \(\frac{1}{5} \text{ of } \frac{1}{5} = \frac{1}{25}\). 2. Now calculate \(\frac{1}{25} \div \frac{1}{125} = 5\). 3. Now calculate \(\frac{1}{125} \div \frac{1}{25} = \frac{1}{5}\). 4. Now subtract: \[ 5 - \frac{1}{5} = \frac{25}{5} - \frac{1}{5} = \frac{24}{5} \] ### Step 5: Final expression Now, we can write the entire expression as: \[ \frac{\frac{133}{25}}{\frac{24}{5}} = \frac{133}{25} \times \frac{5}{24} = \frac{133 \times 5}{25 \times 24} = \frac{665}{600} = \frac{133}{120} \] ### Step 6: Approximate the value To find the approximate decimal value: \[ \frac{133}{120} \approx 1.1083 \] ### Conclusion The value of the expression lies between \(1.1\) and \(1.2\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

The value of (2)/(3)div(3)/(1)" of "(4)/(9)-(4)/(5)xx1 (1)/(9)div(8)/(15)+(3)/(4)div(1)/(2) is :

The value of 5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) of 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)

The value of 4(2)/(5) div { (1(1)/(2)-3(1)/(5)) 3(2)/(5) +(2(1)/(5) div 1(1)/(2) + 4(2)/(5)) +(1)/(2)} is :

The value of (1/3 + [4 (3)/(4) - (3 (1)/(6)-2 (1)/(3))])/((1/5 of 1/5 div 1/5) div (1/5 div 1/5 xx 1/5)) lies between:

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

The value of 15(7)/(10)+3(1)/(5) of [5(1)/(8)-(2(1)/(4)+(5)/(3)xx(15)/(14)div(10)/(9) of (3)/(14))] is :

The value of (2(6)/(7)"of"4(1)/(5)div(2)/(3))xx1(1)/(9)div((3)/(2)xx2(2)/(3)"of"(1)/(2)div(1)/(4)) is :

What is the value of (3)/(7) div (9)/(21) +2-(4)/(3)+(1)/(2)" of "(12)/(5) xx (25)/(18) div (5)/(9) ?