Home
Class 14
MATHS
If x^4 + x^(-4) = 194 , x gt 0, then th...

If `x^4 + x^(-4) = 194 , x gt 0,` then the value of `x + (1)/(x)` is :

A

4

B

6

C

8

D

14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^4 + x^{-4} = 194 \) for \( x + \frac{1}{x} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ x^4 + x^{-4} = 194 \] We can rewrite \( x^{-4} \) as \( \frac{1}{x^4} \): \[ x^4 + \frac{1}{x^4} = 194 \] ### Step 2: Introduce a substitution Let \( y = x + \frac{1}{x} \). We need to express \( x^4 + \frac{1}{x^4} \) in terms of \( y \). ### Step 3: Use the identity We know that: \[ x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2 = y^2 - 2 \] Now, we can find \( x^4 + \frac{1}{x^4} \): \[ x^4 + \frac{1}{x^4} = (x^2 + \frac{1}{x^2})^2 - 2 = (y^2 - 2)^2 - 2 \] Expanding this gives: \[ (y^2 - 2)^2 - 2 = y^4 - 4y^2 + 4 - 2 = y^4 - 4y^2 + 2 \] ### Step 4: Set up the equation Now we set this equal to 194: \[ y^4 - 4y^2 + 2 = 194 \] Subtracting 194 from both sides gives: \[ y^4 - 4y^2 - 192 = 0 \] ### Step 5: Substitute \( z = y^2 \) Let \( z = y^2 \). Then we have: \[ z^2 - 4z - 192 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \( z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ z = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-192)}}{2 \cdot 1} \] \[ z = \frac{4 \pm \sqrt{16 + 768}}{2} \] \[ z = \frac{4 \pm \sqrt{784}}{2} \] \[ z = \frac{4 \pm 28}{2} \] Calculating the two possible values for \( z \): 1. \( z = \frac{32}{2} = 16 \) 2. \( z = \frac{-24}{2} = -12 \) (not valid since \( z \) must be non-negative) Thus, \( z = 16 \). ### Step 7: Find \( y \) Since \( z = y^2 \): \[ y^2 = 16 \implies y = 4 \quad (\text{since } x > 0) \] ### Conclusion Thus, the value of \( x + \frac{1}{x} \) is: \[ \boxed{4} \]
Promotional Banner