Home
Class 14
MATHS
(cosec A - sin A)^2 + (sec A - cos A)^2 ...

`(cosec A - sin A)^2 + (sec A - cos A)^2 - (cot A - tan A)^2` is equal to

A

1

B

2

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\csc A - \sin A)^2 + (\sec A - \cos A)^2 - (\cot A - \tan A)^2\), we will follow these steps: ### Step 1: Rewrite the trigonometric functions Recall the definitions of the trigonometric functions: - \(\csc A = \frac{1}{\sin A}\) - \(\sec A = \frac{1}{\cos A}\) - \(\cot A = \frac{\cos A}{\sin A}\) - \(\tan A = \frac{\sin A}{\cos A}\) ### Step 2: Substitute the definitions into the expression Substituting the definitions into the expression, we have: \[ \left(\frac{1}{\sin A} - \sin A\right)^2 + \left(\frac{1}{\cos A} - \cos A\right)^2 - \left(\frac{\cos A}{\sin A} - \frac{\sin A}{\cos A}\right)^2 \] ### Step 3: Simplify each term 1. **First term**: \[ \left(\frac{1 - \sin^2 A}{\sin A}\right)^2 = \left(\frac{\cos^2 A}{\sin A}\right)^2 = \frac{\cos^4 A}{\sin^2 A} \] 2. **Second term**: \[ \left(\frac{1 - \cos^2 A}{\cos A}\right)^2 = \left(\frac{\sin^2 A}{\cos A}\right)^2 = \frac{\sin^4 A}{\cos^2 A} \] 3. **Third term**: \[ \left(\frac{\cos^2 A - \sin^2 A}{\sin A \cos A}\right)^2 = \left(\frac{\cos^2 A - \sin^2 A}{\sin A \cos A}\right)^2 = \frac{(\cos^2 A - \sin^2 A)^2}{\sin^2 A \cos^2 A} \] ### Step 4: Combine the terms Now we can combine the terms: \[ \frac{\cos^4 A}{\sin^2 A} + \frac{\sin^4 A}{\cos^2 A} - \frac{(\cos^2 A - \sin^2 A)^2}{\sin^2 A \cos^2 A} \] ### Step 5: Find a common denominator The common denominator for the first two terms is \(\sin^2 A \cos^2 A\): \[ \frac{\cos^4 A \cos^2 A + \sin^4 A \sin^2 A - (\cos^2 A - \sin^2 A)^2}{\sin^2 A \cos^2 A} \] ### Step 6: Simplify the numerator The numerator simplifies as follows: - \(\cos^4 A + \sin^4 A - (\cos^2 A - \sin^2 A)^2 = \cos^4 A + \sin^4 A - (\cos^4 A - 2\cos^2 A \sin^2 A + \sin^4 A)\) - This simplifies to \(2\cos^2 A \sin^2 A\). ### Step 7: Final expression Thus, we have: \[ \frac{2\cos^2 A \sin^2 A}{\sin^2 A \cos^2 A} = 2 \] ### Conclusion The final result is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (cosec A-sin A)(sec A-cos A)=(1)/(tan A+cot A)

What is the value of (cosec A - sin A) (sec A - cos A) (tan A + cot A) ?

What is (cosec x - sin x ) (sec x- cos x) (tan x + cot x) equal to ?

(1+cot A-csc A)(1+tan A+sec A)" is equal to "

7. (sin A+cos A)(cot A+tan A)=sec A+cosec A

Prove that ( "cosec" A - sin A)(sec A- cos A)=(1)/((tan A+ cot A)).

(cosec theta + sin theta) (sec theta - cos theta) tan theta + cot theta) is equal to

(sec A (sec A + tan A)(1-sin A))/ ((cosec^2 A-1)sin^2 A) is equal to: (sec A (sec A + tan A)(1-sin A))/ ((cosec^2 A-1)sin^2 A) का मान क्या होगा ?

( Sec^2 theta - cot ^2 (90 - theta))/( cosec ^2 67^@ - tan ^2 23^@) + sin ^2 40 ^@ + sin ^2 50^@ is equal to