Home
Class 14
MATHS
If a:b=2:3, then the value of (5a^(3)-2a...

If a:b=2:3, then the value of `(5a^(3)-2a^(2)b):(3ab^(2)-b^(3))` is :

A

`16:27`

B

`32:29`

C

`34:19`

D

`27:16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given ratio \( a:b = 2:3 \). We need to find the value of the expression \( (5a^3 - 2a^2b):(3ab^2 - b^3) \). ### Step 1: Express \( a \) and \( b \) in terms of a common variable From the ratio \( a:b = 2:3 \), we can express \( a \) and \( b \) as: - Let \( a = 2k \) - Let \( b = 3k \) ### Step 2: Substitute \( a \) and \( b \) into the expression Now we substitute \( a \) and \( b \) into the expression \( (5a^3 - 2a^2b):(3ab^2 - b^3) \). 1. **Calculate \( 5a^3 \)**: \[ 5a^3 = 5(2k)^3 = 5(8k^3) = 40k^3 \] 2. **Calculate \( 2a^2b \)**: \[ 2a^2b = 2(2k)^2(3k) = 2(4k^2)(3k) = 24k^3 \] 3. **Calculate \( 3ab^2 \)**: \[ 3ab^2 = 3(2k)(3k)^2 = 3(2k)(9k^2) = 54k^3 \] 4. **Calculate \( b^3 \)**: \[ b^3 = (3k)^3 = 27k^3 \] ### Step 3: Substitute these values into the expression Now we substitute these calculated values back into the expression: \[ (5a^3 - 2a^2b) = 40k^3 - 24k^3 = 16k^3 \] \[ (3ab^2 - b^3) = 54k^3 - 27k^3 = 27k^3 \] ### Step 4: Form the ratio Now we have: \[ (5a^3 - 2a^2b):(3ab^2 - b^3) = 16k^3 : 27k^3 \] ### Step 5: Simplify the ratio We can simplify this ratio by canceling \( k^3 \): \[ 16 : 27 \] ### Final Answer Thus, the value of \( (5a^3 - 2a^2b):(3ab^2 - b^3) \) is \( 16 : 27 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If a-b=5 and ab=12, find the value of a^(3)+b^(2)

If a:b = 2:5, the find the value of ((3a + 2b))/((4a + b)) .

If a:b=2:5,. fid the value of (3a+2b)/(4a+b)

If a = (2 + sqrt3)/(2 - sqrt3) and b = (2 - sqrt3)/(2 + sqrt3) , then the value of (a^(2) + b^(2) +ab) is :