Home
Class 14
MATHS
The value of 1 (2)/(3) +[16(1)/(2) - ...

The value of ` 1 (2)/(3) +[16(1)/(2) - { 1 (1)/(10) (3(1)/(3) +5)}] 1/4 " of " 2 (1)/(2) xx 4 (4)/(5)` is :

A

`1 (2)/(5)`

B

`1(4)/(5)`

C

`23(2)/(3)`

D

`3(1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 1 \frac{2}{3} + [16 \frac{1}{2} - \{ 1 \frac{1}{10} (3 \frac{1}{3} + 5)\}] \frac{1}{4} \text{ of } 2 \frac{1}{2} \times 4 \frac{4}{5} \), we will follow the order of operations (BODMAS/BIDMAS rules). ### Step-by-step Solution: 1. **Convert Mixed Numbers to Improper Fractions**: - \( 1 \frac{2}{3} = \frac{5}{3} \) - \( 16 \frac{1}{2} = \frac{33}{2} \) - \( 1 \frac{1}{10} = \frac{11}{10} \) - \( 3 \frac{1}{3} = \frac{10}{3} \) - \( 2 \frac{1}{2} = \frac{5}{2} \) - \( 4 \frac{4}{5} = \frac{24}{5} \) So the expression becomes: \[ \frac{5}{3} + \left[\frac{33}{2} - \left\{ \frac{11}{10} \left(\frac{10}{3} + 5\right) \right\}\right] \frac{1}{4} \text{ of } \frac{5}{2} \times \frac{24}{5} \] 2. **Calculate Inside the Braces**: - First, calculate \( \frac{10}{3} + 5 = \frac{10}{3} + \frac{15}{3} = \frac{25}{3} \). - Now, calculate \( \frac{11}{10} \times \frac{25}{3} = \frac{275}{30} = \frac{55}{6} \). The expression now looks like: \[ \frac{5}{3} + \left[\frac{33}{2} - \frac{55}{6}\right] \frac{1}{4} \text{ of } \frac{5}{2} \times \frac{24}{5} \] 3. **Calculate the Bracket**: - Find a common denominator for \( \frac{33}{2} \) and \( \frac{55}{6} \). The LCM of 2 and 6 is 6. - Convert \( \frac{33}{2} = \frac{99}{6} \). - Now calculate \( \frac{99}{6} - \frac{55}{6} = \frac{44}{6} = \frac{22}{3} \). The expression now is: \[ \frac{5}{3} + \frac{22}{3} \times \frac{1}{4} \text{ of } \frac{5}{2} \times \frac{24}{5} \] 4. **Calculate the "of" part**: - \( \frac{1}{4} \text{ of } \frac{5}{2} = \frac{1}{4} \times \frac{5}{2} = \frac{5}{8} \). - Now calculate \( \frac{5}{8} \times \frac{24}{5} = \frac{24}{8} = 3 \). The expression now simplifies to: \[ \frac{5}{3} + \frac{22}{3} \times 3 \] 5. **Final Calculation**: - Calculate \( \frac{22}{3} \times 3 = 22 \). - Now combine \( \frac{5}{3} + 22 = \frac{5}{3} + \frac{66}{3} = \frac{71}{3} \). 6. **Convert to Mixed Number**: - \( \frac{71}{3} = 23 \frac{2}{3} \). ### Final Answer: The value of the expression is \( 23 \frac{2}{3} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

4(1)/(2) xx 4(1)/(3) -8(1)/(3) -: 5(2)/(3) =?

The value of 5-(2 1/2 -3/4) + (3 1/2- 1 1/4) is

The value of 3(1)/(5) - [2(1)/(2) - ((5)/(6) - ((2)/(5) + (3)/(10) - (4)/(15))] is :

The value of 1/ ( 5 + (2 / (3 1/4 ) ) ) is

The value of 4(2)/(5) div { (1(1)/(2)-3(1)/(5)) 3(2)/(5) +(2(1)/(5) div 1(1)/(2) + 4(2)/(5)) +(1)/(2)} is :